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Three walls to defend

Software
Personnel
Hardware

Three freedoms sought

Independence from vendors
Full ownership rights
Permanent security

Four kinds of hardware problems

« Outdated approaches ignore security
» Excessive complexity hides problems
« Manufacturer interests prevail

« Silicon chips can't be repaired later

Two enablers of success

» Surface-mount technology
« Firmware in RAM as logic
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A D flip-flop only changes its output when:

1. told it's time to check, and
2. output doesn't already reflect the input.

Input

Shutter l l l l

Time increasing —»




A RAM can remember a lot of 18-bit words.

18-bit "address" where store or
retrieve will occur

WU

RAM
Random-Access Memory
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18-bit word to store to or
retrieve from the given address
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of the number 7 of multiplication
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firmware

Firmware Loader

Block diagram
of computer

CPU
Central Processing Unit

. 1/0
Primary Storage
y 8 Input and Output
program RAM 1’C serial buses
data RAM SPI serial buses
registers
stack

page table



Counter

Block diagram
What step are we at? of CPU with
program RAM

Program RAM

What should happen?

Control Decoder Using which data?
How to do it?
ALU Computed _
Arithmetic Logic Unit < data > Registers




letter codes for flip-flops

Address for code reads and writes
Bypass page table

Call (save return address)
Destination register

From incrementer

Input from i/o

Jump and call destinations
iMmediate argument

Output to i/o

add one

return
addresses

Return (restore return address) node 0
To incrementer
Write code A program
® writes disabled LN ®@~"AM
node 1
a
firmware load v v T
| left right
VAN registers registers
node 2
v \4
o m b page <
table ALUa e
® ®
firmware
o) load
subsystem node 3
\4 A 4
data T |e
RAM £ LUB™ ¢
node 4
\4
ALUY e
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firmware load node 5

CPU Principal
Data Paths

From page 17 in text.
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L and R: 36-bit Left and Right operands, 6 bits per slice
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coarse rotate, coarse rotate, coarse rotate, coarse rotate, coarse rotate, coarse rotate,
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Y: 36-bit result, 6 bits per slice
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ALU with carry propagation elements shown

Small digits that are not subscripts indicate number of wires. From page 88 in text.



Superposition of ALU Operations

Carry-skip adder Swizzler Logarithmic shifter Substitute & permute
Ll R Ll R Ll R Ll R
o e o o | o |
p p p p
v v v v
0 Bi |« 0 Bi |+ 0 Bi |+ 0 Bi |+
PN PN PN PN
v v v v
T |«& T | T |«¢ T |«¢
result ¢ result i result i result ¢

Same circuit
Same chips
Same board space
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Hardened desktop apps
Electronic mail

Light- to moderate-use servers
Controlling objects that move
Process controls

Peripheral & device controllers
Telephony

Modest Ethernet switches

Too Slow For

Most Web surfing

Machine learning

Image and video processing
Self-driving vehicles

Fast raster or vector graphics
Fast symmetric cryptography
Fast asymmetric cryptography
Bioinformatics



Sticky out-of-range flag for all arithmetic

Mixed-sign variants for add, subtract, multiply, shift, abs. value
Stack overflow unlikely, can't lead to privilege escalation

No program access to stack except CALL and RETURN

No branch to addresses not present in the instruction word
No privilege escalation via the CPU

No DRAM or DRAM-associated vulnerabilities

No complex logic from IC manufacturers within CPU

Every I/0 device confined to its own bus and buffer

No CPU persistent state except for one firmware IC

No secret functionality

No vendor lock-in

No encrypted or closed-source firmware

No license fees to build, use, or modify

No purpose of use limitations

No right to repair infringements
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Before This Can Be Built

* Preemptive multitasking

* /0 subsystem to support SPI and I°C buses
* Firmware loader

» Resolution of clock skew concern



Firmware upgrade for faster multiplication

Support for integer division

Floating point like IEEE 754-2019, but 36- and 72-bit formats
Floating point for compatibility (32- and 64-bit formats)
More assembler features

Lightweight operating system

Lightweight scripting language

Lightweight programming language

Minimalist toolchain that can be audited

I/0 device drivers

TCP/IP stack

TLS 1.3

New block cipher to leverage architecture

Formal verification (similar to seL4 or INTEGRITY-178B)
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