A Solder-Defined Computer Architecture
for Backdoor and Malware Resistance

Candidate:; Marc W. Abel

Committee; Travis Doom, Ph.D. Dissertation Director
Jack Jean, Ph.D.
Michael Raymer, Ph.D.
Krishnaprasad Thirunarayan, Ph.D. TK. Prasad

Vincent Schmidt, Ph.D. Air Force Research Laboratory

For slides: https.//wakesecure.com
Department of Computer Science and Engineering E— R
30 November 2022 WRIGHT STATE

UNIVERSITY

Three walls to defend

Software
Personnel
Hardware

Three freedoms sought

Independence from vendors
Full ownership rights
Permanent security

Four kinds of hardware problems

« Outdated approaches ignore security
» Excessive complexity hides problems
« Manufacturer interests prevail

« Silicon chips can't be repaired later

Two enablers of success

» Surface-mount technology
« Firmware in RAM as logic

(8

R

WRIGHT STATE
UNIVERSITY

LU 1Y 1S 2! i 1 i

AND d & G [
NAND 1 151 [[I
OR m m m m Sev.en Basic
\OR m |I| III |I| Logic Gates
XOR d 0 o El

BUFFER 1] [
INVERTER 7] [I]

A D flip-flop only changes its output when:

1. told it's time to check, and
2. output doesn't already reflect the input.

Input

Shutter l l l l

Time increasing —»

A RAM can remember a lot of 18-bit words.

18-bit "address" where store or
retrieve will occur

WU

RAM
Random-Access Memory

ARRRRRRRRRRRRRRRY

18-bit word to store to or
retrieve from the given address

Respresentation Respresentation
of the number 7 of multiplication

000111 111000

WU HIHE JH

RAM
with preloaded arithmetic firmware

WAL

000000000000111111

Respresentation
of the number 63

firmware

Firmware Loader

Block diagram
of computer

CPU
Central Processing Unit

. 1/0
Primary Storage
y 8 Input and Output
program RAM 1’C serial buses
data RAM SPI serial buses
registers
stack

page table

Counter

Block diagram
What step are we at? of CPU with
program RAM

Program RAM

What should happen?

Control Decoder Using which data?
How to do it?
ALU Computed _
Arithmetic Logic Unit < data > Registers

letter codes for flip-flops

Address for code reads and writes
Bypass page table

Call (save return address)
Destination register

From incrementer

Input from i/o

Jump and call destinations
iMmediate argument

Output to i/o

add one

return
addresses

Return (restore return address) node 0
To incrementer
Write code A program
® writes disabled LN ®@~"AM
node 1
a
firmware load v v T
| left right
VAN registers registers
node 2
v \4
o m b page <
table ALUa e
® ®
firmware
o) load
subsystem node 3
\4 A 4
data T |e
RAM £ LUB™ ¢
node 4
\4
ALUY e
| ®
firmware load node 5

CPU Principal
Data Paths

From page 17 in text.

Rs

Y

L and R: 36-bit Left and Right operands, 6 bits per slice

L, R,

Y

Ls R,

Wi

L, R,

WY

Ly R,

i

Data Layers
of ALU

Ro

WY

add, subtract,

add, subtract,

add, subtract,

add, subtract,

add, subtract,

add, subtract,

logic, etc. logic, etc. logic, etc. logic, etc. logic, etc. logic, etc.

'\ |)«
——
5>]
TT/%Y Y Y
HH& M WY WY + W

coarse rotate, coarse rotate, coarse rotate, coarse rotate, coarse rotate, coarse rotate,

shift, etc. shift, etc. shift, etc. shift, etc. shift, etc. shift, etc.

\g\

— =
i 3 //"r\'z RO
MM Wittt Wit 22222 Wittt 222424
carry/borrow, carry/borrow, carry/borrow, carry/borrow, carry/borrow, carry/borrow,

fine rotate, etc.

fine rotate, etc.

fine rotate, etc.

fine rotate, etc.

fine rotate, etc.

fine rotate, etc.

llgll

uyu

llilll

llilll

Y: 36-bit result, 6 bits per slice

lllYlll

iy

© 2021 IEEE. Reprinted, with permission, from M. W. Abel, "Solder-Defined Architectures for Trusted Computing," NAECON 2021—
IEEE National Aerospace and Electronics Conference, 2021, p. 251, doi: 10.1109/NAECON49338.2021.9696432.

old carry
|
0
RN

P
o

d

Py
C

4

|

transpose

!

B |+

|

oA

C

transpose

!

B |+

|

transpose

SN

Y

4

Ls Rs L>
6l 6 Gl 6
ol | ol |

o |

C

transpose

!

B |+

|

transpose

SN

o |

C

transpose

!

B |+

|

transpose

S|

oA

C

transpose

|

B |+

|

transpose

S|

T

C

NI

transpose

!

B |+

|

transpose

new carry q transpose
N

Y |
|
Outputs Ys

Y4

ALU with carry propagation elements shown

Small digits that are not subscripts indicate number of wires. From page 88 in text.

Superposition of ALU Operations

Carry-skip adder Swizzler Logarithmic shifter Substitute & permute
Ll R Ll R Ll R Ll R
o e o o | o |
p p p p
v v v v
0 Bi |« 0 Bi |+ 0 Bi |+ 0 Bi |+
PN PN PN PN
v v v v
T |«& T | T |«¢ T |«¢
result ¢ result i result i result ¢

Same circuit
Same chips
Same board space

374.28 rlok rlok rlek 374.35 or and and
theta alphad alphal alpha2 beta3 .
r1ok rilek rlok nand nor and
374.29 374.36
rlek rlek rlok nand and and
374.26 aode 374.37 -
nor and nand
beta® gamma0 gammal gamma2 betad
and xor or
374.27 aodl 374.38
rlok rlek rilek
betal alpha3 alpha4 alphas betas . i E
rlek rilek riek
rlek rlek or xor xor
giant6 giant4 giant3
beta2 gamma3 gammad gamma5 S D1
giant7 giant5 giant2
riok riek riek 374.31 giantl inv
Me i R L 80mhz ¢
rlok riek riek T xor and and
374.32 giant®
rlok rlek rlek and and and
374.22 374.21 conctrl 374.11 374.9 374.17 o
xor xor xor
M1 P o
xor and and
374.41 374.20 374.30 374.12 374.10 374.18
and and and
H
374.13 flop flop flop 374.34 374.0 374.5 flop flop flop 374.15 xor xor xor
o o zeta . — . . .
flop flop flop flop and and and
374.33 374.1 374.6 - 374.16
flop flop flop flop xor and and and
374.7 374.23 374.4 flop flop 374.2 flop flop flop xor xor
and and and nor or or and and and
374.8 374.24 374.19 374.3
and or xor xor and and

Circuit Board

Floorplan
From page 180 in text.

or nand
nand nor
inv. and and

nand nand nand

flop flop and

nand xor

ASkEtch of

= :\;n;\;mm\a

3

.
o
i‘.‘\ll\lﬂ

W

:

X

%%
Nlu\“l_n'\n\\\u\a-
petad

e o e o =

Y s \w.; % = gy

o]
. e T

s - iﬁﬁﬂ#‘ i \,".- o

=

his
-

From
page
305 in text.

Hardened desktop apps
Electronic mail

Light- to moderate-use servers
Controlling objects that move
Process controls

Peripheral & device controllers
Telephony

Modest Ethernet switches

Too Slow For

Most Web surfing

Machine learning

Image and video processing
Self-driving vehicles

Fast raster or vector graphics
Fast symmetric cryptography
Fast asymmetric cryptography
Bioinformatics

Sticky out-of-range flag for all arithmetic

Mixed-sign variants for add, subtract, multiply, shift, abs. value
Stack overflow unlikely, can't lead to privilege escalation

No program access to stack except CALL and RETURN

No branch to addresses not present in the instruction word
No privilege escalation via the CPU

No DRAM or DRAM-associated vulnerabilities

No complex logic from IC manufacturers within CPU

Every I/0 device confined to its own bus and buffer

No CPU persistent state except for one firmware IC

No secret functionality

No vendor lock-in

No encrypted or closed-source firmware

No license fees to build, use, or modify

No purpose of use limitations

No right to repair infringements

IR

WRIGHT STATE
UNIVERSITY

Demonstration

Before This Can Be Built

* Preemptive multitasking

* /0 subsystem to support SPI and I°C buses
* Firmware loader

» Resolution of clock skew concern

Firmware upgrade for faster multiplication

Support for integer division

Floating point like IEEE 754-2019, but 36- and 72-bit formats
Floating point for compatibility (32- and 64-bit formats)
More assembler features

Lightweight operating system

Lightweight scripting language

Lightweight programming language

Minimalist toolchain that can be audited

I/0 device drivers

TCP/IP stack

TLS 1.3

New block cipher to leverage architecture

Formal verification (similar to seL4 or INTEGRITY-178B)

(8

R

WRIGHT STATE
UNIVERSITY

