
ELEGANT ALUS FROM SURFACE MOUNT SRAMS

A proposal submitted in partial fulfllment of the

requirements for the degree of

Doctor of Philosophy

by

Marc W. Abel

B.S., California Institute of Technology, 1991 γδβγ

2020

Wright State University

ABSTRACT

Marc W. Abel, Department of Computer Science and Engineering,
Wright State University, 2020. Elegant ALUs from Surface Mount SRAMs.

We consider the logic family comprised of separately packaged asynchronous

static RAMs for building computing systems requiring isolation from supply-chain

backdoors. Static RAM is singular in its ability to operate as pure combinational logic

notwithstanding its high transistor count, resulting in tremendous computational

elegance on one hand, but no sequential enclaves to build a backdoor into on the

other hand. Still further security beneft derives from SRAM’s fungibility, low cost,

assured absence of data when power is removed, and limited input word size.

Register fles, control decoders, and memory management units are

straightforward to produce using SRAM. But a knowledge gap exists for arithmetic

logic units, or ALUs. It can be tempting to encode “textbook” ALUs into SRAM tables,

but so doing throws away much computing power and speed. It turns out that even

small ALUs can implement not just bitwise and additive logic, but also fast rotations

and shifts with overfow detection, subword transpositions and copies, bit and prefx

counts, foating point micro-operations, short multiplication, pointer realignments,

minimum and maximum, mixed-signedness comparisons, mixed-signedness

arithmetic with overfow detection, subword permutations, and robust mixing

functions for hashing, pseudorandom numbers, and cryptography.

An interesting duality emerges between the computation required of ALUs and

the structure of SRAM logic. This duality tends to pull SRAM ALU designs into dense,

elegant circuits with many symmetries, surprising word size preferences, and

unexpected speed. The proposed research will specify, test, characterize, and

disseminate a 36-bit ALU design that arises from these structures, thereby

combining the robustness of computation ofered by SRAM ALUs with the ease of

manufacture and peace of mind they aford.

ii

CONTENTS

1.  Problem and approach 7

1.1  Manifesto on the security of CPUs 7

1.2  Practicality and economy of building CPUs 10

1.3  Logic family selection 11

1.4  SRAMs as electrical components 15

1.5  Proposal’s focus on ALUs 19

1.6  Questions for research 21

2.  Essential logic blocks of SRAM ALUs 25

2.1  Hierarchy of ALU capabilities 25

2.2  Simple lookup elements 27

2.3  Arbitrary geometry adders 27

2.4  Carry-skip adders 28

2.5  Swizzlers 31

2.6  Logarithmic shifters 32

2.7  Semi-swizzlers 32

2.8  Substitution-permutation networks 33

2.9  Fast multipliers 33

3.  2-layer ALU designs 38

3.1  An elegant 2-layer ALU for 36-bit words 38

3.2  A tiny ALU for 18-bit words 42

4.  3-layer ALU designs 44

4.1  An elegant 3-layer ALU for 36-bit words 44

4.2  Additive opcodes 46

iii

4.3  Bitwise boolean opcodes 46

4.4  Compare opcodes 47

4.5  Shift and rotate opcodes 48

4.6  Multiply opcodes 49

4.7  Bit scan opcodes 50

4.8  Bit permute opcodes 53

4.9  Mix opcodes 60

4.10  α layer operation 62

4.11  α layer operation, leftmost tribble 65

4.12  β layer operation 65

4.13  γ layer operation 66

4.14  θ operation 68

4.15  Miscellaneous unary operations 69

4.16  Leading and trailing bit manipulation 72

5.  Implications 73

5.1  Characteristics of surrounding CPU 73

5.2  Mixed signedness and practical overrange checks 81

5.3  Security 83

5.4  Anticipated performance 85

5.5  Suitable uses and limitations 86

5.6  Social and psychological beneft 88

5.7  Originality of research and contributions made 89

6.  References 94

iv

PLATES

1. Simple lookup element

2. Arbitrary geometry addition

3. Subword carry decisions for 3-bit addition

4. 2-layer carry-skip adder

5. 2-layer carry-skip adder: old carry via top

6. 2-layer carry-skip adder: bidirectional

7. 3-layer carry-skip adder

8. 4 × 4 swizzler

9. 16-bit logarithmic shifter

10. 4 × 4 semi-swizzler

11. 4-bit S-box

12. 16-bit substitution-permutation network

13. Data signals for a 36-bit, 2-layer ALU

14. Control signals for a 36-bit, 2-layer ALU

15. Data signals for an 18-bit ALU

16. Superposition of major components of 3-layer, 36-bit ALU

17. Block diagram of 36-bit ALU

18. Bit slice and carry hardware for a 36-bit, 3-layer ALU

19. Decomposition of a random 36-bit permutation

20. Size comparison of 3-layer, 36-bit ALU with bank card

LISTINGS

1. Assembly code for 36-bit unsigned multiplication

2. Python 3 specifcation of S-boxes for the MIX opcode

v

 

98

98

98

99

99

100

100

101

101

102

103

103

104

105

106

107

108

109

110

111

 

127

128

TABLES

1. Suggested operations for 36-bit, 2-layer ALU

2. SRAM sizes for 36-bit, 3-layer ALU

3. SRAM input bit assignments

4. SRAM output bit assignments

5. Opcode summary for 36-bit, 3-layer ALU

6. Additive opcodes

7. Bitwise boolean opcodes

8. Compare opcodes

9. Shift and rotate opcodes

10. Multiply opcodes

11. Bit scan opcodes

12. Bit permute opcodes

13. Mix opcodes

14. α operations

15. α operations dealing with signedness

16. Propagate and carry encodings from α

17. β operations

18. γ operations

19. θ operations

20. Arithmetic overfow conditions

21. α.u and γ.u unary operations

22. Stacked unary operations

23. Single-instruction β and γ tribble permutations

24. Compact set of tribble permutations for two instructions

25. Frequently used swizzle operations for β.z

26. 2-cycle leading and trailing bit manipulation

vi

 

112

112

113

114

115

116

116

117

117

117

118

118

118

119

120

120

121

121

122

122

123

124

125

125

126

126

1. PROBLEM AND APPROACH

1.1 Manifesto on the security of CPUs

Herein is the privilege of being a computer scientist: each of us has an

opportunity to identify technology that could bolster a specifc and preferably

humanitarian agenda, and then seek out that technology and make it visible for

others. A special interest I owe to my undergraduate faculty is demonstrable

correctness of computing implementations, a property of paramount importance

thirty years later in the face of increasingly adversarial conditions.

Much concern has been expressed recently about how the computing

hardware we use is designed, and the immense attack surface that is now at our our

adversaries’ disposal as a consequence. I’m not going to write much about this attack

surface, as it is being extensively documented by others [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11]. Instead, here is some work I can do in cooperation with my dissertation

committee to ofer a safer home for some of the world’s automation, computation,

and communication.

The security problems with today’s silicon derive from root causes external to

the hardware itself. We can talk about speculative execution, pipelines, cache misses,

malformed input, unstable memory schemes, corrupt stacks, arithmetic overfow,

dopant-level trojans, closed-source microcode, open system buses, proprietary

frmware, counterfeit accessories, and privilege escalation. These technical

opportunities superpose with the human circumstances of globalization, divergent

interests, addiction to power, situational ethics, and economic inequality. But I

believe the root problem with our CPUs is they are designed, assembled, and

distributed without input from the community that uses them. If we hope to fnd

solutions for our security concerns, a thoughtful look in a mirror might be a

promising start.

A parallel malady has long existed in the software supply chain: software

companies have been writing software for the purpose of selling it, rather than out

7 April 9, 2020

of their own need to have or use their wares. The symptoms are all too familiar:

needless changes and revisions made to already deployed software, premature end

of support for widely used systems, easily foreseen vulnerabilities, cloud-based

licensing, and subscription-only availability. In many domains, the open-source

software movement has aforded relief for some users. In other domains, much

remains to be accomplished. I believe that on the whole, community-sourced

software has brought unprecedented freedom, security, and stability to a world of

users. I am also confdent that we can can achieve similar progress with CPUs,

ofering stability, security, and freedom instead of obsolescence, malfeasance, and

monopolism.

I can only speak on my own behalf, but I think a consensus would exist that

CPUs for sensitive applications need to be demonstrably our own. They must answer

to no one other than their owners, exhibit no bad behaviors, and have a feature set

that we fnd agreeable. Here are some basic postulates of satisfactory CPUs:

1. CPUs must not run operating systems. Instead, operating systems must

run CPUs.

2. A CPU must not facilitate any exploit that can bypass any control of the

operating system that is running it.

3. A CPU must run any and all adversary-supplied code without possibility

for privilege escalation,1 never violating operating system permissions or

resource limits.

4. Included and attached hardware, as well as buses, must not facilitate any

exploit that can bypass any control of an operating system that is

running a CPU.

5. Attaching a CPU to a computer network must be no less secure than

keeping the CPU air gapped.

6. A CPU must unconditionally protect all instruction pointers, including

branch targets and subroutine return addresses.

1 A regrettable exception is needed for social engineering attacks, which by Rice’s theorem cannot
dependably be distinguished from fully mechanized attacks.

8 April 9, 2020

7. A CPU’s security must not be fragile in the presence of malformed input.

8. A CPU must mitigate unanticipated modular arithmetic wrapping without

bloat, inconvenience, slowdown, or incorrect results.

9. A CPU must never give incorrect results merely due to unexpected

signedness or unsignedness of an operand.

10. A CPU must support preemptive multitasking and memory protection,

except for uses so simple that the application running and the operating

system are one and the same.

11. A CPU must provide hashing, pseudorandom number generation, and

cryptography capabilities consistent with its intended use.

12. A CPU must not depend in any manner on microcode updates for its

continued security or suitability for use.

13. A CPU must be repairable by its owner, particularly with regard to on-site

replacement of components or stored data that the owner might

foreseeably outlive.

14. A CPU must be replaceable by its owner in its as-used form.

15. A CPU must be delivered with objective, verifable evidence of conformity

with these postulates.

Simultaneously satisfying the above postulates is comfortably within human

intellect to accomplish. I have two sorobans in my lab that generally meet the

parameters of this list, even though they don’t use electricity to do arithmetic. Two

TRS-80s here also run fne, and although lacking, conform closer to the above than

the 64-bit machine that this proposal was written on.

Requirement 15 spawns two corollaries:

16. All components of a CPU must be available, afordable, fungible, and

inspectable.

17. A CPU must not contain unknown, undocumented, unreadable, or

unauditable circuitry, frmware, or microcode.

9 April 9, 2020

Fungible means if a component can’t be obtained from one supplier, a diferent

component that will work equivalently can be obtained from a choice of suppliers.

Inspectable means the manner of operation of a component can be verifed by the

owner in as much detail as desired.

The requirements I’ve laid out aren’t wistful parameters to secure this

committee’s go-ahead for investigative daydreaming. I have identifed specifc,

constructible, elegant mechanisms for such needs as memory protection, arithmetic

wrap-around, efcient hash functions, and alternatives for electrolytic capacitors.

Not all are within the scope of this proposal, but I stand ready to back up all of this

document’s functional demands.

If our suppliers aren’t ready to assent to the above postulates, we can build

superb CPUs independently. But citizen-builders need to be prepared to trade away

two things. First, our CPU designs will depart from historic norms. They won’t run

MacOS or Microsoft Windows. They won’t play DRM-protected copies of Angry Birds.

They might never run OpenBSD or Android, and I hope they won’t become

compilation targets for GCC or LLVM, as neither is small enough to plausibly audit

against backdoors. But if users commit to this concession, suitable operating

systems, toolchains, and tools will appear.

The second concession we need to build our own CPUs concerns their

dimensional quantities. We won’t get the speed, energy efciency, memory density,

economy, word size, or parallelism that a semiconductor fab delivers. Instead, we’ll

get security and ownership characteristics that we need more than these

dimensional quantities. The dimensions are merely numbers, and as long as our

CPUs are suitable and efective as used, it doesn’t matter what their performance

metrics come to. As a computer-literate undergraduate, I was content to read my

email on a VAX. I didn’t need to know that its clock speed was 3125 kilohertz.

1.2 Practicality and economy of building CPUs

Building a CPU requires an assembly process we can manage, and components

10 April 9, 2020

we can live with. Our selections need to be available to most technical people with

ordinary means. That rules out designing our own VLSI, but multilayer circuit board

manufacturing is available in small runs at nominal cost, as is surface mount

assembly. The change in capital scale is forceful: manufacturing technology costing

less than $1 million displaces a semiconductor fabrication plant that costs over $1

billion. This vastly expands the options for assembly plant ownership, siting, and use.

The cost to use an assembly facility will not exclude many builders. Some new

refow ovens cost less than $300, and yet-smaller-scale soldering methods exist. eet

larger, automated assembly lines with excellent controls can be hired at even less

cost than donated time using the cheapest tools. The price to have a “one-of”

multilayer circuit board assembled, including manufacture of the board itself, can be

less than $100 over the cost of the components used. The whole transaction can be

a turnkey process where CAD fles are uploaded, and the specifed CPU arrives via

mail.

An eighth-grader with a web browser and a debit card can build a CPU. This is a

great shift from historic norms, when CPUs were assembled using wire wrap on

boards plugged into backplanes in cabinets. Although CPU designs shrank into fewer

and fewer discrete packages to reduce assembly costs, assembly costs themselves

ultimately collapsed. The least expensive time in history to build CPUs “the hard

way”—assembled from separate packages outside of a semiconductor plant—is

today and tomorrow.

1.3 Logic family selection

The electronic component industry has few patrons who want parts to build

CPUs. The inventory is meant for other purposes, so for right now we have to be

creative and make do with what we can obtain. Like MacGyver on Monday nights, we

need both purposeful intent and an open mind to use what’s available.

Almost all CPUs made out of anything except silicon wafers lately have been

somebody’s avocation; however, the research of this proposal was not undertaken

11 April 9, 2020

for hobbyists. Trustworthy CPUs are needed to control dams, fy planes, protect

attorney-client privilege, mix chemicals, leak secrets, coordinate troops, transfer

funds, and retract the fve-million-pound roof of Lucas Oil Stadium at the option of

the Colts. All components selected must be for sale at scale, not scrounged from

scrap, and they must remain available for the expected duration of manufacturing

and servicing.

Here is a list of logic families we might be able to procure and use. Neither

practicality nor seriousness was a requirement to appear on this list, because every

choice here has important drawbacks. It is better to start with an openly imaginative

list than to overlook a meritorious possibility.

Electromagnetic relays have switching times between 0.1 and 20 ms, are large,

costly, and have contacts that wear out. Relays generally have the wrong scale: a

practical word processor will not run on relays. Relays ofer certain benefts, such as

resistance to electrostatic damage, and purring sounds when operated in large

numbers [12].

Solid-state relays, including optical couplers, can compute, but more cost-

efective solid-state logic families are readily available.

Vacuum tubes have faster switching times than relays, but are large, costly,

and require much energy. Like relays, their scale is wrong in several dimensions.

Commercial production in the volumes needed does not exist today. Power supply

components might also be expensive at scale. Ordinary vacuum tubes wear out

quickly, but special quality tubes have proven lifespans of at least decades of

continuous use [13].

Nanoscale vacuum-channel transistors may someday work like vacuum

tubes, but at present are only theoretical.

Transistors in individual packages are barely within scale. The VML0806

package size is the smallest available, measuring 0.8 x 0.6 x 0.36 mm. An advantage

to using discrete transistors is that no component sees more than one bit position,

so slipping a hardware backdoor into the CPU unnoticed would be particularly

12 April 9, 2020

difcult.2 Finding transistors with desirable characteristics for CPUs might not be

possible now; the MOnSter 6502 is an 8-bit CPU, but it can only operate to 50 kHz

due to component constraints [15].

7400 series and other glue logic has largely been discontinued. NAND gates

and inverters aren’t a problem to fnd, but the famed 74181 4-bit ALU is gone, the

74150 16:1 multiplexer is gone, etc. Most remaining chips have slow specifcations,

obsolete supply voltages, limited temperature ranges, through-hole packages,

and/or single sources. 4-bit adders, for example, are still manufactured, but their

specs are so uncompetitive as to be suggestive for use as replacement parts only.

Counter and shift register selection is equally dilapidated. Even some leading

manufacturers are distributing datasheets that appear to be scanned from disco-era

catalogs.

Current-mode logic ofers fast, fast stuf with diferential inputs and premium

prices. Around $10 for a confgurable AND/NAND/OR/NOR/MUX, or $75 for one XOR/

XNOR gate. Propagation delay can be under 0.2 ns. Power consumption is high. For

ordinary use, parallel processing using slower logic families would be cheaper than

using today’s current-mode devices for sequential processing.

Mask ROM requires large runs to be afordable, and fnished product must be

reverse engineered to assure against backdoors. Propagation delay has typically

been on the order of 100 ns, probably due to lack of market demand for faster

products. If anyone still makes stand-alone mask ROM, they are keeping very quiet

about it.

EPROM with a parallel interface apparently comes from only one company

today. 45 ns access time is available, requiring a 5V supply. Data retention is 10 years

in vendor advertisements, but omitted from datasheets.

EEPROM is available to 70 ns with a parallel interface. Data retention is

typically 10 years, but one manufacturer claims 100 years for some pieces.

NOR flash with parallel interfaces is suitable for combinational logic, ofering

2 One possible backdoor would be to install several RF retro-refectors like NSA’s RAGEMASTER [26] in
parallel, or a single retro-refector in combination with a software driver.

13 April 9, 2020

speeds to 55 ns. Storage density is not as extraordinary as NAND fash, but 128M × 8

confgurations are well represented by two manufacturers as of early 2020. Although

access time is much slower than static RAM, the density ofered can make NOR fash

faster than SRAM for uses like fnding transcendental functions (logs, sines, etc.) of

single-precision foating-point numbers. Data retention is typically 10 to 20 years, so

these devices must be periodically refreshed by means of additional components or

temporary removal from sockets. Few organizations schedule maintenance on this

time scale efectively. Also, because no feedback maintains the data stored in these

devices, NOR fash may be comparatively susceptible to soft errors.

One use for parallel NOR fash could be for tiny, low-performance

microcontrollers that are free of backdoors. We will need exactly such a controller

for loading microcode into SRAM-based CPUs. Here again, a servicing mechanism

would need to exist at the point of use on account of NOR fash’s limited retention

time.

NAND flash is available with parallel interfaces, but data and address lines are

shared. These devices aren’t directly usable as combinational logic. Serial NAND fash

with external logic could be used to feed microcode into SRAM-based ALUs. Periodic

rewrites are required as with NOR fash.

Dynamic RAM, or DRAM, does not have an interface suitable for combinational

logic. This is in part because included refresh circuitry must rewrite the entire RAM

many times per second due to self-discharge. Although standardized, DRAM

interfaces are very complex, and datasheets of several hundred pages are common.

DRAM is susceptible to many security exploits from the RowHammer family [16], as

well as to cosmic ray and package decay soft errors. The sole upside to DRAM is that

an oversupply resulting from strong demand makes it disproportionately

inexpensive compared to better memory.

Static RAM, or SRAM, has the parallel interface we want for combinational

logic once it has been initialized, but is not usable for computing at power-up. It is

necessary to connect temporarily into all of the data lines during system initialization

to load these devices. Facilitating these connections permanently increases

14 April 9, 2020

component count and capacitance.

As a logic family, static RAM’s main selling point is its speed. 10 ns access times

are very common, with 8 and 7 ns obtainable at modest price increases. Price is

roughly 600 times than of DRAM as of 2020, around $1.50/Mibit. As a sequential logic

family using standalone components, SRAM ofers the best combination of cost and

computation speed available today. As main memory, SRAM’s decisive selling point is

natural immunity from RowHammer and other shenanigans.

SRAM’s ability to provide program, data, and stack memory at the required

scale, abundant registers, and for some designs cache memory, is a characteristic

not aforded by the other logic families. This means that regardless of what

components we select for computation, our design will include SRAM for storage.

This storage will have to be trusted, especially in light of the global view of data that

the SRAM would be given. If our trust of SRAM for storage is not misplaced, then also

using SRAM for computation might not expand the attack surface as much as adding

something else instead.

Programmable logic devices, or PLDs, and field programmable gate arrays,

or FPGAs, can implement CPUs but are not inspectable, are auditable, not fungible,

ship with undocumented microcode and potentially other state, have a central view

of the entire CPU, and have a very small number of suppliers controlling the market.

They are amazing, afordable products with myriad applications, but they might also

be the ultimate delivery vehicle for supply chain backdoors. They are easily

reconfgured without leaving visible evidence of tampering. I would not employ these

when security is a dominant need.

1.4 SRAMs as electrical components

Static RAM is confusingly named, as here static means the RAM does not

spontaneously change state, not that it uses a static charge to hold information.

Dynamic RAM uses a static charge, and therefore spontaneously forgets its stored

contents and requires frequent refreshes. SRAM is said to be expensive, but this is

15 April 9, 2020

only compared to DRAM. SRAM generally uses four to ten transistors to store each

bit, while DRAM uses one transistor and one capacitor. SRAM is about 600 times as

expensive per bit, so factors beyond transistor count infuence price. Even so, the

price of SRAM has fallen more than 100-fold during the period I’ve been writing

software.

Asynchronous SRAM is available in 2020 in sizes to about 32 Mibit, with access

times around 10 ns. For more money, 7 ns is ofered. An organization named JEDEC

has standardized pinouts not only between manufacturers, but also across SRAM

sizes. With careful planning, one can make boards for computers in advance, then

wait for an order before deciding what size RAM to solder on. Current trends favor

3.3 volt power, operating temperatures from −40 to +85 C, and a certain but

imperfect degree of component interchangeability. The JEDEC pinouts are somewhat

undermined by manufacturers ensuring they ofer non-overlapping—although

standardized—package geometries.

At least one manufacturer ofers error correction code, or ECC, as an optional

feature for its SRAM.3 These RAMs with ECC are plug-in-replacements for ordinary

RAMs, so it’s possible to add ECC to a system design even after circuit boards have

been made and early models have been tested. There isn’t really a price or speed

penalty for specifying ECC, but it defnitely limits supplier selection and appears to

preclude dual sourcing. Also, as ECC RAM packages are only visually distinguishable

by supplier markings and are not operationally distinguishable, it would be prudent

to verify ECC’s presence (by electron microscopy or comparing error rates in the

presence of noise or radiation) in samples prior to claiming that computing hardware

was built using ECC RAM.

If a path through a CPU is long enough to warrant pipelining, synchronous

SRAM (that is, with clocked input and/or output) can be used for this purpose. The

designs presented in this paper have short paths, no deeper than three gates except

for long multiplication, and will run fastest if not clocked. Nonetheless, synchronous

SRAM could be benefcial at circuit boundaries if it eliminates a need for external

3 This particular SRAM uses four ECC bits per byte stored.

16 April 9, 2020

latches.

Because much RAM-based ALU logic will produce outputs just a few bits wide,

one might be tempted to drop the 64k × 16 size that is frequently seen in this

proposal down to 64k × 8 bits. There are a few reasons this isn’t practical, but a key

one is no one bothers to make the narrower size. This omission may seem foreign to

early microcomputer users who dreamed of someday upgrading their systems to 64

kilobytes. Although 16-wide RAM uses double the transistors than we strictly require,

there are tangible benefts to having the extra width. Fan-out gets heavy at various

points, and being able to double up on some outputs may spare the cost and

propagation delay of additional bufers. There are also situations where information

must be duplicated between two otherwise segregated buses. The redundant

outputs already included in today’s SRAM make this need for isolation easier to

accommodate, particularly given that 64k × 16 RAMs have separate enable lines for

their upper and lower data bytes.

The chief drawback of using RAM as a building block is that what we actually

desire is ROM. The contents of function-computing memory only need altered if the

architecture or features change. There are a couple of problems with ROM, to

include EEPROM, write-once EPROM, and related products. Foremost, ROMs are

extremely slow, so much that most models are actually manufactured with serial

interfaces. They aren’t for use when speed counts. The fastest parallel EPROM I’ve

found ofers a a 45 ns access time, contrasted with 10 ns for inexpensive SRAM.

The parallel interface we need to compute with SRAM is a problem at power-

up, because no facility is included to load the data. The forward-feed nature of SRAM

combinational logic makes it possible to progressively set many address lines to

desired locations as initialization continues, but nothing connects within the layers to

access the data lines—note these are separate from and work diferently than the

address lines—and write the memory. An alternative serial interface like JTAG could

do this, but JTAG is only available on large, complex, synchronous RAMs. The smaller,

simpler SRAMs we need aren’t available with JTAG ports. What we have to do instead

is connect extra components into every isolated node, and these nodes number in

17 April 9, 2020

the hundreds. These startup components and their connections will consume power

and board space, and worst of all, add capacitance to the CPU and slow it down

nominally. But even with this bad news, SRAM is still the best logic family we know of

to build CPUs on our own.

Analog switches have been identifed which might be appropriate for feeding

lookup tables to nested SRAMs during power-up. These include4 the PI3B3253 from

Diodes Inc. and IDT’s QS3VH253, and are available with footprints down to 3 × 2 mm.

The capacitance of either of these devices is of similar order to that of another RAM

pin or even two, so there is a penalty. Each package has two copies of a 1-to-4 pass

transistor mux-demux with an all-of option, so reaching the data lines of a 64k × 16

RAM would require roughly two switch ICs on an amortized basis, plus additional

logic farther away from where computations are made. Cost varies widely by model

but can approach $0.25 per switch chip for some. So initialization hardware costs as

of now will add about 50% to our SRAM cost.

One beneft of installing these analog switches is data can fow in either

direction when they’re in the on state. We can not only write to individual RAMs

within a CPU or ALU, but read back their contents for diagnostic and development

purposes. Of course we can build a backdoor this way, but we’re not interested. Such

a backdoor would also be plainly visible. Concerns that this extra path to the RAMs

may present a security concern may be mitigated by adding a non-resettable latch

that locks out reads and writes once all tables are loaded and the system is ready to

compute. This same latch might also enable the CPU clock: if the system can run at

all, SRAM access via the initialization circuitry is locked out for as long as the power

stays on. Including an LED indicator could promote further confdence.

Cheap tricks can reduce the extent of what SRAMs see when used as registers

and main memory. For example, odd bit positions can be stored on one chip, and

even positions on another. The security beneft to this might be more psychological

than actual, but as a general principle every component’s access to information

4 Analog switch models and manufacturers mentioned are to facilitate comprehension only. I have
tested none, and I endorse neither.

18 April 9, 2020

should be kept at a minimum, especially when a precaution costs nothing.

As SRAM fabrication processes vary considerably, there exists at least a factor-

of-four variance in power consumption among chips rated for the same speed and

supply voltage. Fan-out, capacitances, package type, and other characteristics need

careful consideration. Assuring continual availability will require being ready with

multiple sources. As a manufacturer change often forces a package change, a variety

of board layouts should be prepared in advance of supply chain surprises. SRAM for

data memory can be hard to specify, because availabilities lapse as one tries to

establish and maintain a range of size options from more than one manufacturer.

1.5 Proposal’s focus on ALUs

Although the justifcation and consequence of our research applies to

democratizing CPUs, the work proposed for my dissertation focuses on arithmetic

logic units specifcally. There are three reasons. First, there is a distinction between

the technology an ALU comprises and the technology of the remainder of its CPU.

These diferences give rise to a clear milestone, stopping point, or “done state” once

an ALU is mature. Second, signifcant diferences separate the methods of operation

and construction of mainstream ALUs and elegant SRAM ALUs. Surprisingly, the

SRAM ALU family appears to be new to the world; at a minimum it’s unfamiliar and

obscure. These ALUs are due extra attention because of their novelty, complexity,

and consequent rapid growth in new knowledge. Third, the characteristics and

design specifcs of SRAM ALUs leak outward into otherwise unexpected

requirements for the CPU surrounding it.

To elaborate on the frst reason, the principal architectural diference between

an ALU and the balance of its CPU is that the ALU uses combinational logic, while the

balance uses sequential logic. ees, sequential ALUs with microsequences, bit-serial

operations, pipelines, and other transient state exist in other domains, but SRAM is

so capability-rich that their general-purpose ALUs beneft little if at all from

sequential logic. Another reason we need to keep ALUs free of sequential logic is

19 April 9, 2020

preemptive multitasking. We seek a CPU that can switch between programs very

quickly while being easy to manufacture from scratch, so we want to preclude any

need for extra circuits for saving and restoring intermediate ALU state. Another

architectural distinction of ALUs is that its regular structure facilitates building the

entire unit from static RAM, while the balance of the CPU will need a broader range

of components. Focusing research on ALUs specifcally helps keep the magnitude of

our scope manageable.

As to our second reason for focusing on ALUs, atomic operations in the SRAM

logic family operate on small subwords, instead of on individual bits as a NAND gate

or full adder might. These atomic operations execute in the same amount of time,

regardless of which operations are chosen, and irrespective of the time and logic

resources that would needed to implement them using other logic families. So for

comparable expenditures of intuition and components, we should expect more

capabilities from ALUs built using SRAMs than ALUs built out of other families.

If this research is to be contributing, we need to avoid loading ALU designs for

other logic families into SRAMs, and reporting: See, we can do this with SRAMs! Fewer

parts! Easy assembly! Brilliant! Of course we can do that with SRAM. The lower part

count is an unavoidable consequence of SRAM being VLSI. This approach throws

away the extraordinary capability ofered by SRAM, while instead abusing it to

emulate 1960s / 1970s / 1980s memes. It’s like locking down Windows 10 to only run

Atari 2600 cartridges. But if we aren’t to copy the past, then designs are needed that

tap the power of SRAM for ALU implementations. My searches for such designs in

the literature found nothing. Elegant SRAM ALUs might not exist in the literature at

all, in which case we have to invent them. I don’t invent things quickly, so it’s prudent

to limit the scope of this research to ALUs.

As I mentioned in reason three, it’s not a good idea to design a CPU with a

metaphorical socket that its matching ALU will plug into, on the basis of prior

understandings as to how ALUs should work. I am aware of neither literature nor

historic systems that ofer any hints as to what SRAM ALUs need from the

surrounding system. It looks deceptively easy: bring inputs from the register fle,

20 April 9, 2020

bring the control word, out go the new fags, and voilà! everything is awesome. But

what if it turns out an SRAM ALU shouldn’t generate carry or overfow fags? These

fags worked fne in the 1960s, but they are a giant problem today and factor

signifcantly into this proposal. An insightful ALU would clean up these fag issues, so

its surrounding CPU will need a new groove. And that register fle, what’s its word

size? Billions of machines with a half century of history vouch for 32 bits. 16 bits will

usually be inadequate, and 64 bits will usually be excessive. But here again are old

assumptions. It turns out that SRAMs have afnities for unexpected word sizes, and

once we tabulate some benefts and drawbacks, we might not select a multiple of

eight bits, let alone a power of two. So here are two brief examples, fags and word

size, that warn us not to get entangled in CPU design until the ALU design is very

mature.

1.6 Questions for research

Here are several questions that I have framed to validate and preserve our

work, as well as to establish a clear milestone as to the present state of the art for

SRAM ALUs. Not only will these answers be immediately reproducible and directly

usable by future implementers and researchers, but they will also help persons who

might be engineers, users, journalists, or policymakers understand the benefts,

applications, and limitations of this emerging information security management

technology.

1. What are some essential logic blocks of SRAM ALUs?

2. How can these logic blocks be combined in an elegant design?

3. What evidence can be ofered in support of a design?

4. Is there a yardstick for assessing the strength of further schemes?

5. Have we produced design tools that would accelerate future work?

6. What are other dividends of using the static RAM logic family?

Work has been done to estimate some of the answers. For Question 1,

21 April 9, 2020

essential logic blocks are known to include simple lookup elements, arbitrary

geometry adders, carry-skip adders, swizzlers, semi-swizzlers, logarithmic shifters,

substitution-permutation networks, and multipliers. But except for simple lookup

elements, and bolt-on, stateful substitution-permutation networks outside of a

general purpose ALU’s ordinary datapath, these logic blocks when implemented

using SRAM are not known to—or are scantly known by—the literature today so far

as I have been able to ascertain. These essential blocks are described more

specifcally later in this proposal in enough detail to make their construction

straightforward.

Question 2 pursues a tangible, testable ALU design as opposed to a

methodology. This is for the beneft of our readers. Someone who is new to

airplanes can learn more about them by fying actual ones than by reading

nineteenth-century fight literature. This relates to Question 4, which pursues an

answer in the form of “here are some benchmarks for the ALU we are sharing with

you.” Generalized or intangible answers to Questions 2 and 4 could leave a reader

either replicating discoveries already made, or not grasping key concepts.

Question 3 is to measure both correctness and suitability of the design that

follows from Question 2. It’s a practical application of this work, and we’ll get to do

some real testing. The correctness portion of the test involves writing test cases

separate from and independently of the earlier design work, and using simulation to

evaluate these test cases. I have seen enough preliminary design to know these tests

are necessary. Designing an ALU with a particular use in mind is at least NP-hard.5

There are many opportunities to run out of space in a table, not have enough

address lines, or to confuse the semantics of signals. These are issues that would be

far easier for me to correct once, than for later readers who unwittingly look for

truth in my mistakes to stumble over repeatedly.

The suitability test for Question 3 will take our design once it has passed

checks for correct computation, and evaluate whether it should nonetheless be

annotated or improved prior to publication. Did we fail to incorporate valuable

5 Without an application in mind, ALU design is an undecidable problem.

22 April 9, 2020

features? Can the instruction set be more practical? Will a potential user regret that I

hadn’t spent more time trying to use the ALU myself? The suitability test I propose

entails writing an estimated 10000 lines of assembly code for a simulated CPU

extrapolated from the ALU design of Question 2. The program I write will be a self-

hosted assembler, meaning it’s an assembler that when given its own source code as

input, produces its own executable as output.6 This coding task will provide our

suitability test a good range of data structures and algorithmic tasks to implement.

This method of assessing suitability will be subjective and not perfectly reproducible,

and is likely to fnd in favor of suitability, but it will shake out bugs, identify wish list

items, test for sufcient stability to allow a surrounding CPU to be designed, and

vouch that the research is of high quality and advances the state of the art.

Question 5 asks what I can leave behind for others who might be interested in

SRAM ALUs. First of all, the working models from Questions 2, 3, and 4 will be placed

in a public open-source repository. People will be able to try, modify, and assemble

code for this ALU. But there are a couple more tools people will discover that they

want, and I need them for my own investigative work as things stand. All SRAM ALUs

are hard to design optimally with chosen constraints on memory sizes, but carry-skip

adders are particularly tedious. I think I can build a 55-bit adder in two layers using

64k × 16 RAMs, but at the time I tested a simulation, I only thought I could reach 45

bits. I had made a miscalculation, but at least the 45-bit test was successful. It would

be useful to be able to have fast answers to what-if questions concerning adders that

minimize the risk of such mistakes. I also think that still using 64k × 16 RAMs, we can

build 256-bit adders in three layers, but probably not 512-bit adders, and I have no

tools right now other than pen-and-paper binary search to determine where that

size boundary is. Question 5 seeks a software tool that answer such inquiries

expediently and confdently, verifying any answers given with confrming

simulations, and providing netlists for potential fabrication. SRAM multipliers are

even more complex: the reason Section 2.9 illustrates how 32-bit multipliers can be

built is that when I crunched the fgures, I had a 32-bit CPU i mind. Today I prefer a

6 All software that I’ve specifed to be written is comfortably within my ability.

23 April 9, 2020

diferent word size, so the previous work needs repeated. I’m not certain yet whether

the new word size will change the multiplier’s speed until I have the updated design.

This time I know to automate the process! Also, multipliers for real CPUs will need to

accommodate both signed and unsigned numbers, meaning some place values are

going to have negative weights. Those of us who don’t reckon like Gauss will require

software to keep our arithmetic and wiring straight.

Question 6 asks for us to look beyond the logic elements that come out of

Question 1, to see if we can add more value to our ALU by tapping the extra

computational heft that SRAM afords us. It’s an easy observation that an ALU can be

dual-purposed to provide ofset calculations during loads and stores in RISC

architectures, although this is not unique to SRAM. But we can add yet more freebies

to our instruction set without adding any more integrated circuits. I expect these to

include counting operations such as Hamming weight, leading and trailing zeros and

ones, permutations within subwords, permutations within transposed subwords,

“short” multiplication of words by subwords, and an opcode I designed for

manipulating pointers that replaces the rightmost portion of a word in one cycle. I

also anticipate one-cycle minimum and maximum instructions. These last don’t

sound very innovative, until we consider that x86 CPUs don’t ofer minimum or

maximum at all for scalars. Our instructions will not only compute minimum and

maximum, but do so even for inputs of arbitrary signedness. I further expect we’ll be

able to test for equality in one cycle correctly, even if one of the words is signed and

the other is unsigned. This is not a common feature of instruction sets and might be

original to this work. I also anticipate being able to do power-of-two multiplications

by means of left arithmetic shift—this is perhaps universally implemented wrong,

because most wrap-around cases are not tested for. But I believe our SRAM ALU will

do left and right arithmetic shifts perfectly, always identifying overrange results

without false negatives or false positives. The same will be true for addition and

subtraction, even if operands are not of the same sign. Thus for Question 6, I plan to

keep looking for these opportunities to set new standards for ALUs by leveraging

what SRAM can ofer.

24 April 9, 2020

2. ESSENTIAL LOGIC BLOCKS OF SRAM ALUS

2.1 Hierarchy of ALU capabilities

Very simple ALUs provide addition and a functionally complete set of bitwise

boolean operations. The “complete set” may be as small as one function, meaning it

is possible to build an ALU with, for example, NOR and addition as its only

operations. For practicality reasons, more than one boolean operation is usually

included, and subtraction is often also included. But in order to use time and

program memory efciently, more complex ALUs are preferred.

Rotate and shift operations ofer the frst progression of ALU upgrades. This

progression starts with shifts of one bit position, then multiple positions using a

counter, and ultimately any number of bit positions in constant time. Doublewords

rotations and shifts appear early on as ALUs mature, especially when a particular

register is designated as “the” accumulator. Although convenient, doubleword

rotations and shifts don’t enhance performance much for most programs. It’s more

that they are very easy to build when it’s always the same two registers that rotate.

The next step up for ALUs is hardware multiplication. Typically two words are

accepted, and a doubleword product is produced. At this step, signed and unsigned

genders of operation are ofered, but combinations of signedness are not ofered.

The foremost need for multiplication is to locate array elements that aren’t a power

of two size. Serious numeric computing also needs multiplication, but arrays will

appear in a much broader range of applications. The distinction between multiplying

for arrays and multiplying for numeric processing becomes important, because

fnding array element locations can usually be done using short multiplication,

implying that many machines will do fne with only a short multiplier.

A lot of software doesn’t require hardware multiplication at all. CP/M,

WordStar, and Pac-Man are historic examples that appeared between 1974 and

1980, when the 8-bit CPUs they targeted ofered no multiplication opcodes. On the

25 April 9, 2020

other hand, multiplication and division instructions had long been standard on

computers with bigger footprints: the IBM 1130 and DEC PDP-10 are examples of

mid-1960s systems with instructions to divide doublewords by words. The hold-up

with early 8-bit microprocessors was they were critically short on die space. Zilog’s

Z80 only contained a 4-bit ALU, which was applied twice in succession to do 8-bit

work. As dies came to support more gates, 16-bit processing, multiplication, and

division simultaneously became practical. As a rule, these three capabilities came as

a set.

The next stage of ALU robustness adds word rearrangement. The ability to

whip subwords around outside the linear order of shifts and rotations is

combinatorially difcult to implement, because the number of potential

rearrangements is larger than the word size can represent. Even rearranging an 8-bit

word requires a 24-bit argument if we are to have full selection including bit

duplication. If only 8-bit permutations are supported and no bits are duplicated, a

16-bit argument is still needed, and fancy logic or a big table has to be added to

decode it. eet rearrangement within words comes up periodically, often with

foreseeable gyrations, and ALUs that provide the common ones in constant time are

desirable. In the x86 family, the 80386 introduced some sign extend instructions, the

80486 added a byte swap for fast endianness modifcation, and BMI2 recently

brought parallel bit deposit and extract.7 Word rearrangement is useful for

serialization, foating-point routines on integer-only CPUs, swizzling for graphics,

evaluating chess positions, hash functions, pseudorandom number generators, and

cryptography. Where practical, ALUs should aid these operations rather than stand

in their way.

Another family of ALU operations to consider is cryptography. Today’s

computers connect to networks, most of which are shared, and many of which are

wiretapped. To be suitable for use, a computer must encrypt and decrypt fast

enough to keep up with its own network trafc. Even if a computer will never be

attached to a network, it’s still likely to need unbiased pseudorandom number

7 Bit Manipulation Instruction Set 2 arrived with Haswell in 2013.

26 April 9, 2020

generation, efective hash functions, and protection (by encryption, information

splitting using a random variable, or otherwise) from storage devices manufactured

overseas.

With the above wish list for ALU features, here are some SRAM building blocks

to deliver the goods. All exist in the literature using conventional logic families, but I

have not found any literature to suggest implementation using RAM, ROM, or any

kind of lookup table. Perhaps no one wants credit for giving away three orders of

magnitude for execution speed, let alone an even larger spike in transistor count.

But there are applications for which I would be willing to wait nanoseconds rather

than picoseconds to assure a CPU’s conformance with the postulates of Section 1.1.

2.2 Simple lookup elements

Simple lookup elements are the fundamental building block of all SRAM logic.

Remember that our decision to use RAM has nothing to do with its mutability: we

actually want ROM, but RAM is much faster and does not require custom masks. The

overall constraining parameter is the number of input bits, which is the base two

logarithm of the number of rows. We need enough inputs bits to select among all

operations the RAM supports, plus these operations’ inputs which are generally one

or two subwords and sometimes a carry bit. Plate 1 shows an example with two

logical and two arithmetic functions. Plate 2 show a another problem type that can

be solved using simple lookups.

Two frequent design tradeofs arise when using simple lookup elements. First,

unary operations can ofer input widths of twice what binary operations can. Second,

the presence of a carry input tends to halve the number of operations a RAM can

provide for a specifc operand confguration.

2.3 Arbitrary geometry adders

Arbitrary geometry adders are a special case of simple lookup elements. Plate

2 shows two addition problems with more than two addends and irregular column

27 April 9, 2020

spacing. In the right example, there’s either a bit missing within an addend or a line

with more than one addend, depending on interpretation. Both examples share a

non-obvious feature of exactly 16 input bits, because each is a one-RAM subtask

from the binary multiplication demonstration in Section 2.9. There is nothing tricky,

just tedious, about how these two RAMs are programmed: some kind person

computes all 216 possibilities using the place values shown.

Simple RAM lookup elements are all over the computing literature and

especially prevalent in PLDs and FPGAs. The case of arbitrary geometry adders using

SRAM isn’t in widespread use or discussion known to me, but relates to and

conceptually derives from the full- and half-adders used in Wallace [17] and Dadda

[18] multiplier circuits since the mid-1960s.

2.4 Carry-skip adders

Carry-skip adders combine subwords by augmenting not-always-certain carry

outputs with a propagate output that is set whenever the correct carry output is

indicated by the carry output from the immediate right subword. Plate 3 shows the

carry outputs that will occur when two 3-bit subwords are added with a possible

carry input. In practice we add wider subwords, but this size keeps the illustration

legible. The key concept is that at times, the carry output cannot be computed until

the carry input is known, and when this occurs the carry output is always exactly the

carry input. So if two machine words are added by means of parallel subword

additions, subword place value results must be determined later than subword carry

results. The circuit responsible for this is called a carry-skip adder, and a 12-bit

example combining 3-bit subword additions appears as Plate 4.

As Plate 4 shows, the number of stages to consider increases as we move

leftward; this is like a spatial transposition of the time sequence of ripple-carry

adders. Traditional carry-skip adders have a time-sequential propagation of carry

information from right to left, but they move by subwords and therefore ofer a

speed beneft over ripple-carry adders. SRAM carry-skip adders go a step further:

28 April 9, 2020

they don’t exhibit any right-to-left time behavior at all, but instead use their table

lookup power to simultaneously make all carry decisions. This is unique to table-

based carry-skip adders, about which I have found no reports in the literature.

SRAM carry-skip adders can be categorized into designs that use either two or

three gate delays. A distinguishing characteristic of 2-layer adders as pictured in

Plates 4–6 is that their carry deciding and fnal subword incrementing happen

simultaneously. They don’t determine the carry decision and then apply it, nor even

compute the needed carry decision at all. They merely apply the correct carry

decision as if it had been computed. Here, the magic of table-driven computation

removes a stage.

Although SRAM carry-skip adders are always ripple-free and sometimes skip

intermediate carry decisions as well, this doesn’t make them universally faster than

familiar carry-skip adders. Their zillion transistors of RAM are far slower than

directly-constructed single-purpose logic like a word adder. So SRAM isn’t going to

revolutionize microprocessor8 addition circuits. What SRAM can do is build

reasonably fast adders for supremely secured and assured systems.

Numerous tradeofs and alternatives appear in SRAM carry-skip adder designs.

Plate 5 moves the old carry input to the frst layer, saving much address space and a

RAM in layer two, but crowding the least-signifcant layer one RAM more. This change

also reduces potential to reuse this circuit for purposes other than addition—recall

that these devices are merely RAMs, and they only become adders because of their

contents. In fact, potential uses other than addition sometimes require that carry

information propagate not from right to left as for addition, but from left to right.9

Plate 6 shows a “bidirectional” carry-skip adder that can propagate information

in either direction. Note the choice to introduce the old carry at the second layer,

and which SRAM the new carry is deemed to appear at depends on the direction of

operation. Although bidirectional operation consumes more inputs at layer 2, their

use fattens out among the RAMs and is in one respect a simplifcation. Although this

8 A microprocessor is a die that contains at least one complete CPU.
9 Left-to-right examples include NUDGE (see Section 4.7) and count leading ones.

29 April 9, 2020

circuit appears to be useful due to its directional fexibility, an ALU that supports the

bit reversal permutation can mirror bits with a preliminary instruction, do the

intended operation with ordinary right-to-left carries, and if need be mirror back the

resulting bits. Considering the scarcity of occasions that a left-to-right carry is

needed, using bit reversals instead—provided they are fast—might be a better

design for some ALUs.

Plate 7 ofers a remedy for the crowded propagate and carry wiring associated

with 2-layer carry-skip adders. It isn’t the wiring, of course, but the address space,

memory, and transistor count for the high-place-value subwords which need

conservation. Two ends of a candle are burning. First, the available subword size for

computation soon reaches zero in the bottom layer, which the top layer must also

mirror. This sets an upper limit on the total word size that can be added. Second, the

adders in Plates 4–6 only add, due to the absence of input bits to select other

operations. We need to fnd more address bits.

Plate 7 adds a middle layer to our carry-skip adder. Only one SRAM is needed

for this layer, because it doesn’t touch any of the tentative sums. It simply reckons

the propagate and carry subword outputs into carry decisions that are passed to

layer 3. The last layer of SRAM is much cleaner, with each RAM requiring only its own

carry decision alongside its tentative sum. The conserved address bits can be used

for other purposes, notably function selection, and perhaps another operand if a use

for one emerges.

Switching to a 3-layer adder adds 50% to its propagation delay, a cost that

requires justifcation. This extra delay isn’t as harsh as it might sound, because

additional delay exists in the datapath. The CPU’s clock will lose at most 20% due to

adding this third layer, subject to a few assumptions. As for justifcation, here are

three items. First, a lot of address space opens up in the third layer, enabling other

computation by these RAMs for non-additive instructions. Second, a lot of time

opens up in the second layer, because Plate 7 has nothing happening to the tentative

sums as the carries are being decided. The second layer can be flled in with more

RAMs to do more computation with no further performance penalty. Third, the high

30 April 9, 2020

fan-out in 2-layer adders for propagate and carry signals incurs a speed penalty.

One of the limitations of the adder circuits we’ve considered is their bandwidth

limitation when computing across subwords. At best, the frst layer can broadcast at

most two bits per subword to the other subwords, and the three-layer adder can

receive at most one bit from other subwords in the third layer. It would be helpful if

we can route a lot of wires between subwords instead of within them, particularly if

we can fgure out a good system for using the extra connectivity.

2.5 Swizzlers

A swizzler is a layer of RAMs that operate on transposed subwords, meaning

that each RAM gets one address bit from each subword, looks something up, and

returns one bit to each subword. Plate 8 shows how this transposition is wired for a

16-bit word with 4-bit subwords. From right to left, each of the four RAMs operates

solely on place value 1, 2, 4, or 8. If the four RAMs have the same contents and same

function chosen, subwords will be treated as atomic entities. This is the case in the

illustration: the operation here is copying the leftmost subword to the rightmost, and

copying the inner left subword to the inner right. The four letters may be interpreted

as either literal hexadecimal digits or 4-bit variables.

Some magic needs to happen in terms of advance planning, because the

number of functions these RAMs can hold (and therefore execute) is a tiny sliver of

the number of functions possible. Additionally, we need to consider that the RAMs

might require unequal contents to achieve certain objectives. It’s also possible that

the function select bits applied might not be the same across all of the RAMs. It’s

even possible that there isn’t an input bit that corresponds directly to each output

bit: some outputs might be fxed ones, zeros, or some function of multiple inputs. It

turns out that all three of these “mights” turn out to be very advantageous, although

none are suggested by Plate 8.

31 April 9, 2020

2.6 Logarithmic shifters

A logarithmic shifter overcomes a key limitation of swizzlers, which are perfect

for fast rotation of subwords, but not of bits. If we assign one bit each to letters a–p,

we can swizzle mnop abcd efgh ijkl to become abcd efgh ijkl mnop . But when

we try to rotate just one bit position from here instead of four, the result will be

ebcd ifgh mjkl anop , because place values remain fxed. In fact, only the leftmost

RAM would move anything, because the remaining transposed subwords are already

correct. To fnish our one-bit rotation, we have to clean up the subwords individually

to yield bcde fghi jklm nopa , which is what we want. This requires a second layer

of RAM that can operate within subwords rather than across them. Plate 9 shows

this combination, which permits rotation of any number of bits in a single pass.

Masking is easily added to the values in the RAMs to supply left and right shifts of

any number of bits.

Three important properties pertain to logarithmic shifters. First, sign extension

works out to support right arithmetic shifts: every RAM that needs a copy of the

leftmost bit will receive it in time. Second, the RAMs within a layer need to all process

the same number of bits. Third, the bits leaving the RAMs of layer one must be

evenly distributed to the RAMs of layer two. Thus when the two layers do use the

same number of RAMs, the subword size will be a multiple of the number of

subwords. Equivalently, the word size will be a multiple of the square of the number

of subwords.

2.7 Semi-swizzlers

A semi-swizzler or half-shifter is a contiguous half of a logarithmic shifter; that

is, a transposition preceding or following a layer of swizzle RAMs, but no

transposition going the other direction. An example appears at Plate 10, using the

same input data and SRAM contents as Plate 8. The computed output looks like

gibberish, because it is still transposed. A semi-swizzler can be applied twice by a

program, using two consecutive instructions, to achieve ordinary shifts and

32 April 9, 2020

rotations. Section 3 discusses the mechanism and tradeofs of superposing a 2-layer

adder with a semi-swizzler to build a compact ALU.

Because the RAMs of a semi-swizzler comprise both the frst and second layer

of a logarithmic shifter, the CPU word size must be a multiple of the square of the

number of RAMs in the semi-swizzler.

2.8 Substitution-permutation networks

An S-box is an invertible substitution that can operate on subwords. Its

purpose is to help progressively alter words in a key-dependent manner, until the

alteration sequence is impractical to reverse without knowledge of the key that was

used. Plate 11 shows a simple 4-bit S-box expressed in hex. Due to our requirement

for invertibility, no value appears more than once in an S-box or its inverse.

A logarithmic shifter with its SRAM contents replaced by S-boxes is an instance

of a substitution-permutation network, or SPN. Its intent is to scramble and

unscramble bits by mixing data as it passes through layers of cross-connected

S-boxes. SPNs are used for constructing hash functions, pseudorandom number

generators, and ciphers. Desirable topologies for SPNs, as well as properties of

cryptographically “strong” S-boxes, have been topics of secret research for half a

century. Plate 12 shows a small SPN built using the S-box of Plate 11.

There is nothing novel about SRAM SPNs, but their mixing capability is very

useful for ALUs to incorporate. They are best used under non-adversarial

circumstances; e.g., to implement hash functions and PRNGs. Suitability for

cryptography is considered in Section 4.9.

2.9 Fast multipliers

Fast SRAM multipliers are nearly as fast as adders in practice; however, the

number of RAMs needed grows a little faster than the square of the word size. The

process itself is primarily one of summing partial products quickly. As schematics of

multipliers are tedious to draw and not particularly legible, here is a walkthrough of

33 April 9, 2020

the process for 32-bit unsigned factors. The 64-bit product will be ready after only

fve gate delays.

Layer 1

The four bytes of each word are multiplied pairwise to form 16 results of 16

bits each. This requires 16 RAMs.

In the diagram here, bytes within a product are separated with colons to

indicate they arrive from the same RAM. The colors used for each product matches

the colors of the factors involved. The place values of each product are consistently

aligned with the factors and each other. The diamond arrangement of these

intermediate results might be unfamiliar: it accommodates the necessary width of

the products and clearly indicates the distribution of bit positions that require

summation.

Layer 2

256 bits of partial products are to be reduced to a 64-bit fnal product. This

doesn’t take many iterations if the width considered by each RAM is kept as narrow

as possible. Addition with carries is put of for as long as possible.

34 April 9, 2020

 11100100 00100100 01101100 10100111
× 11111100 01001000 11111000 00011001

 00010110:01000100
 11011100:11100000 00000011:10000100
 01000000:00100000 00100010:11100000 00001010:10001100
 11100000:01110000 00001010:00100000 01101000:10100000 00010000:01001111
 00100011:01110000 00011110:01100000 10100001:11001000
 01101010:01010000 00101110:11111000
 10100100:01100100

In this picture, the bits above the line are an exact repetition of the previous

layer’s output, but their colors now indicate which RAMs they are grouped into for

addition. The rightmost place value of each color group can be observed to be the

same before and after this operation. Each band can group as many as 16 input bits.

The process used is the arbitrary geometry addition from Section 2.3, and is a simple

table lookup. The black digits on the left and right are not being added, but are

passed forward for later addition (left) or for direct use in the fnal product (right).

The reduction in bits is considerably faster than one fnds in Wallace [17] or Dadda

[18] multipliers, because the SRAMs ofer fuller capability than full- and half-adders.

As this step starts, 8 bits are fnished and 248 remain to add. Afterward, 13 bits are

fnished and only 99 remain to add. 15 RAMs are used.

Layer 3

The process of layer 2 repeats with 6 RAMs and further gains.

35 April 9, 2020

 00010110 01000100
 11011100 11100000 00000011 10000100
 01000000 00100000 00100010 11100000 00001010 10001100
 11100000 01110000 00001010 00100000 01101000 10100000 00010000 01001111
 00100011 01110000 00011110 01100000 10100001 11001000
 01101010 01010000 00101110 11111000
+ 10100100 01100100

 00100 00 001 101 0010 11 01001 0100 010
 11100000 010000 001000 000110 0001010 0100100 01001111
 00 110100 0 11010 0 10011 01 1010 010 1011

 00100 00 001 101 0010 11 01001 0100 010
 11100000 010000 001000 000110 0001010 0100100 01001111
+ 00 110100 0 11010 0 10011 01 1010 010 1011

 1110 00 1110000 00100 011 1001000 01100100 01001111
 00000 1101010 010 01001 0100011 10

Layer 4

If arbitrary geometry addition as in layers 2 and 3 is continued here, the fnal

product will be available after layer 6. But the remaining terms are simple enough to

use carry-skip addition to fnish in just fve layers. The fourth layer is the frst of the

carry-skip adder. The carry and propagate outputs are drawn as colored in this

text. We omit adding the seven leftmost bits so that only three RAMs are used by this

layer.

Layer 5

The fnal multiplier layer fnishes the carry-skip addition. Propagate and

carry signals replicate leftward so that all RAMs involved in this stage have what

they need to reach the sum. The leftmost RAM would have been lightly used, so it’s

able to pick up the seven bits that were skipped at layer 4. This layer uses three

RAMs, and the complete multiplier uses 43.

To multiply signed numbers, the sign bit(s) of any signed factor(s) has a

negative place value; e.g., bit position 7 of an 8-bit signed number has place value

−128. The partial products and addition reductions thereafter will consume and

generate a smattering of bits with negative place values. This won’t cause the SRAM

logic elements any hardship: the only change will be to assure enough output bits for

36 April 9, 2020

 1110 00 1110000 00100 011 1001000 01100100 01001111
+ 00000 1101010 010 01001 0100011 10

 11100000 11010100 1 0100 10000011 11001000 01100100 01001111
 000 0 01100010 01001

 0
 00 0
 111000 0 0 0
+ 00000 11010100 11100010 01001100 10000011 11001000 01100100 01001111

 11100000 11010100 11100010 01001100 10000011 11001000 01100100 01001111

each RAM, group inputs in the correct address widths, and precompute its addition

table correctly.

To multiply numbers with any signedness, build a signed multiplier with an

extra bit position; e.g., build a 33-bit multiplier for 32-bit words, using the extra bits

in layer 1 as a signedness bit instead of as a sign bit. This approach is better than

applying the grade-school “a negative times a positive” rule to the entire problem.

Although conceptually simple, the school method would either add many RAMs and

almost double the gate delay, or use additional instructions for testing and

branching.

The division of the original factors into subwords does not need to be

symmetric, as long as all product and sum place values are grouped correctly. For

example, an any-signedness multiplier for 32 bits using 64k × 16 SRAMs does not

need to spill from 16 partial products into 25 in order to ft the signedness bits. One

factor can have four subwords of [7 bits + signedness, 8 bits, 8 bits, 9 bits], and the

other fve subwords of [5 bits + signedness, 6 bits, 7 bits, 7 bits, 7 bits], for 20 partial

products calculated by 20 SRAMs.10 I have not counted the number of subsequent

layers needed or the number of RAMs in each layer, as the work proposed will

provide a tool to do so quickly. Another confguration would be to maintain 16

devices in layer 1 by enlarging some of the RAMs. This confguration adds 9 Mibit to

layer 1, with unknown changes to the memory used by the other layers. Automating

the design process will make it easy to identify multiplier confgurations with the

fewest gate delays and least cost.

10 This confguration could use mainly 32k × 16 and 16k × 16 RAMs, but the former sell for more money
than 64k × 16, and the latter aren’t ofered for sale. There is, at least, a slight reliability beneft in
leaving much of a 64k × 16 RAM unused, as the opportunity for soft errors is proportionately reduced.
There may also be some energy saved, depending on the cell design of the chips selected.

37 April 9, 2020

3. 2-LAeER ALU DESIGNS

3.1 An elegant 2-layer ALU for 36-bit words

A standard 64k × 16 RAM is functionally a dual, byte-wide device with shared

address inputs. The two output bytes have separate enable lines and can be

independently put into a high-impedance state. We can leverage this to build ALUs

with very few components, by superposing a semi-swizzler onto the frst layer of a

carry-skip adder.

Plate 13 shows a 36-bit ALU made from just ten RAMs in two layers. These

RAMs operate on 6-bit subwords to do all the work, and this illustration only shows

the wiring for the subwords themselves. The various control signals are drawn

separately for legibility as Plate 14, but note that the ten boxes refer to the same ten

RAMs in both fgures.

The top layer of the ALU does almost all the work. 16 functions accepting two

inputs of six bits are stored in the upper bytes of the top-layer RAMs. The functions

are selected via a 4-bit control input (Plate 14), and the byte select lines (not shown)

enable the upper bytes while forcing the lower bytes to high impedance. This mode

provides a traditional mix of additive and logical functions, as well as subword

multiplications. There is no hardware support for 36-bit × 36-bit multiplication.

By enabling the lower bytes of the top-layer RAMs, and forcing the upper bytes

to high impedance, the outputs are transposed in the manner of a semi-swizzler.

These lower bytes provide 16 functions for swizzling, rotations, shifts, permutations,

S-boxes, and other operations that beneft from transposition. The performance

penalty is that the transposition only goes in one direction per instruction executed,

so in nearly all cases it takes two CPU instructions to do anything with these lower

bytes.

A second factor derates the speed of this ALU: the fan-out for propagate and

carry signals peaks at seven, including startup hardware and a yet-unmentioned

overrange output. This speed penalty is small enough that bufering would make the

38 April 9, 2020

delay worse, yet large enough to increase the appeal of a three-layer design.

The bottom layer does nothing other than add whatever carries are required

during addition and subtraction. All other functions, including the lower byte

functions with transposed outputs, must force their propagate and carry outputs low

so that the bottom layer does not spuriously change results. Also, although the

bottom layer conceptually has fve RAMs, the carry decision task for subwords e1 and

e2 takes so few inputs that one RAM can settle both subwords.

This ALU does not quite fnish all calculations in two layers. Because the

subword outputs are not known until the bottom layer has fnished processing, a

zero fag is not yet computed for the whole 36-bit result. For this reason, fve

subword zero signals are shown emerging from the ALU. An external fve-input

NAND gate combines these signals into an aggregate zero fag. There will be enough

surrounding delay in the datapath to absorb the NAND gate’s delay.

The RAM on the bottom left has one more address line than the others to

accommodate a carry output. This is a 2 Mibit, 128k × 16 device. The remaining RAMs

are 64k × 16. This ALU has no carry input, because all address lines on the top right

RAM are tasked for other uses. As the word size is already 36 bits, an occasional

branch on the carry fag’s value is typically enough support for adding and

subtracting wider integers.

Table 1 maps out space in the frst RAM layer for suggested operations of this

ALU. This table’s purpose is to show (i) an appropriate set of operations to

implement, and (ii) that the complete set can be implemented within the address

space available. Several provisions made in this table aren’t immediately obvious, so

here is some explanation.

This ALU always produces a 37-bit signed result when adding or subtracting

irrespective of operand signedness, but the 2−36 bit, inaccurately termed the “sign

bit,” does not ft within a word and is not retained after the result is inspected for

overfow. The inspection is fairly simple. If the 2−36 bit does not match the 235 bit and

the result is signed, overfow will occur upon truncation. If the result is unsigned and

the 2−36 bit is set, overfow has already occurred. Overfow will not occur If neither

39 April 9, 2020

situation applies. For signed results, the 235 bit then becomes known as the 2−35 bit.

All this would work out fne with 37-bit signed inputs, but what come from the

registers are the customary 36-bit overloaded-signedness inputs. Our workaround is

to have separate ALU operations for the several operand type combinations; this is

why Table 1 requires three add and four subtract operations. The surrounding CPU

will test for wrap-around and latch a Range fag when needed.

There aren’t obvious identity, clear, or bitwise NOT operations for this ALU, but

all three can by synthesized from XOR and constants. Short multiplication works

across matching subwords and is always unsigned. Two cycles are needed, because

six 12-bit results are produced. The low-order subwords are produced by the normal

operation. The high-order subwords appear in the same place values as their

operands, because that’s where the RAMs are. This means that prior to adding

subwords of a product together, the high subwords must be shifted six bits left. In

anticipation of this, the high subword multiplication operation supplies the initial

transposition for the shift, reducing by one the number of cycles needed.

The reader might wonder how overfow is avoided for short multiplication, as

the result is potentially 42 bits. Usually nothing needs to happen, because the main

use for short multiplication is to compute memory addresses of array elements. It’s

reasonable to expect the main memory to be SRAM, not DRAM. For a multiplication

result to exceed 36 bits at 2020 prices, more than $400,000 in SRAM needs to be in

the system.

Permutations, swizzles, and S-box operations usually require word

transposition and are specifed accordingly. Plain permutations within subwords also

are supported. A set of 64 unary operations, selectable at the subword level, are

included. One of these operations computes the fxed-point reciprocal

⌊ (236 − 1) ÷ max(n , 1) ⌋, the largest unsigned word one can multiply by n without

overfow. Most of the remaining 63 are simpler; a starting list of candidate

operations appears as Table 21.

Shifts are rotations are implemented in two CPU cycles, because these require

two permutation stages and two transpositions. The number of positions to move by

40 April 9, 2020

must be replicated beforehand into each subword. Thus a rotation may take four

cycles if the number of positions cannot be expressed as a constant: two to

transpose, replicate, and transpose back the rotation amount, and two to accomplish

the rotation itself. Negative shifts and rotations are unavailable, because the range

−35 … +35 cannot be expressed within a 6-bit subword. As right rotations are

expressible as left rotations, separate functions for right rotation are not helpful.

When rotating right by a variable amount, no subtraction from 36 is required prior to

replication into subwords, because one of the 64 available swizzle operations can

combine the needed subtraction and permutation. No speed is lost by leaving out

right rotation.

Plate 14 purposely omits some control logic that would easily confuse readers

who are trying to understand this ALU for the frst time. In addition to what is drawn,

the propagate signals from the fve RAMs which ofer them are combined in a fve-

input NAND gate. The output of that gate is used only for left shifts, and indicates

that signed or unsigned overfow resulted from a multiplication by a power of two.

There are more subtleties. The rightmost RAM doesn’t have an output bit left for

overfow detection; it got used for zero detection. Here we are helped by a kludge.

Cycle two of a left shift operates on transposed words, meaning that fve of the six

bits not checked during cycle one can be tested by other RAMs on cycle two. This

leaves only the 20 bit not tested, a bit which can only overfow during shifts of more

than 34 or 35 bit positions depending on signedness. Smaller fxed shifts needn’t

check the 20 bit at all. Of the remaining cases, the only shift amounts that can

overfow always do when shifting a nonzero word.11 The few programs that can’t be

written to preclude all possibility of such unorthodox shifts must assume

responsibility for checking the 20 bit. But for most software, this ALU detects left shift

overfow as perfectly as it detects additive wrap-around. Masking for left shift can’t

happen until cycle two, or overfow from the rightmost subword will go undetected.

The overrange conditions for addition, subtraction, and left shift are not

11 The surrounding instruction set implements logical left shifts as unsigned left shifts with the overfow
signal suppressed. This is the ordinary case when the rightmost bit might shift more than 35
positions.

41 April 9, 2020

routine events comparable with the carry fag that other ALUs set. These conditions

almost always involve processing errors, meaning that the indicating fag must only

be cleared by an opcode exclusive to that purpose. A latching fag precludes the

need to check after every arithmetic operation whether or not something bad

happened. Instead, a long sequence of perhaps thousands of instructions can be

run, followed by a single fag check prior to committing the result to a database or

other observable outcome.

The parenthesized operations in Table 1 are useful but non-essential, and

subject to displacement for good cause.

This ALU is not the most capable one a user can build on her own for high-

confdence applications, but it already towers over the prior art. For uses where its

speed and operations are suitable, anyone with the motivation can build or have

built a practical, robust, inspectable, and tamper-evident ALU for 36 bits using ten

small, fungible RAMs. I believe that on for the total component count, as well as the

limited availability of parts that might be regarded as trustworthy, it would be

difcult to improve on the overall design of this ALU. This device is conceptually

mature, and the design frontier has moved to the CPU which surrounds it.

3.2 A tiny ALU for 18-bit words

The ALU of Plates 13 and 14 can’t be cut down to build a 24-bit or 30-bit

version, because 24 and 30 are not multiples of 16 and 25 (the squares of the

number of subwords in the semi-swizzler) respectively. This means we cannot meet

the requirement to have a self-inverse transposition and a single subword size at the

same time. But we can build 12- and 18-bit versions, and these ALUs require only

three or four RAMs respectively. The transpose wiring, shown for 18 bits on Plate 15,

is rearranged to minimize loss of left shift overfow detection. Only the 20 and 21 bits

are unchecked, so arithmetic shifts of up to 15 bit signed and 16 bits unsigned come

with range checking. The right half of Plate 14 shows the control signals, where the

worst fan-out (including two sinks not shown) is fve. The instruction set can be as

42 April 9, 2020

stated in Table 1, although the S-box outcomes will not agree with the results of their

36-bit counterparts.

43 April 9, 2020

4. 3-LAeER ALU DESIGNS

4.1 An elegant 3-layer ALU for 36-bit words

A three-layer carry-skip adder’s middle layer is substantially empty, because

the only thing happening is tabulation of carry decisions. By placing a swizzler in the

middle layer’s datapath, and overlaying a logarithmic shifter with the adder’s frst

and third layers, we can build a robust ALU using 19 RAMs. Plate 16 shows this

superposition. Several improvements over the two-layer design arise, at the cost of

some additional hardware and approximately 15% added to the cycle time.12

Plates 17 and 18 show the general arrangement of a 3-layer, 36-bit ALU, with

the latter plate showing how the bit slices are assembled. For clarity of reading, the

transposition wiring across subwords is not drawn, but is identical to the lower-byte

transposition on Plate 13. As the transposition is self-inverse and happens both

before and after the middle layer, the outer layers see no transposition when the

middle RAMs act transparently. The layers implement so many functions that they

defy naming, so they are named α, β, and γ after their order of appearance. Their

RAMs are numbered 0–5 from the right, so the notation α5 designates the most-

signifcant RAM of the frst layer. The carry decision RAM, one in number, is

denoted θ.

17 bits from the instruction decoder tell the ALU’s RAMs what function to

implement, of which 14 are visible on Plate 18.13 These separate layer controls, plus

additional control for θ’s carry decision method, can get a lot of work accomplished

in one pass. The right operand is fed to all three layers unmodifed, allowing any

layer to either compute a function of two inputs, or select any of 64 single-input

functions on a per-subword basis.

This ALU has 10.5 Mibit of SRAM in 19 packages; Table 2 lists their individual

sizes. As these byte-wide RAMs are not sold today, actual device widths will be 16

12 The cycle time penalty is estimated using fve total datapath layers for the 2-layer ALU, 10 ns SRAM
access time, 2 ns per layer delay for board capacitance, and a 3 ns fan-out penalty for the 2-layer
circuit. The 3-layer ALU adds a net 9 ns to the datapath.

13 Section 4.11 accounts for the three control bits not shown.

44 April 9, 2020

bits, and total physical storage will be 21 Mibit. It’s possible to “fold” the 64k × 16 size

into 128k × 8 units at the cost of some capacitive load and added inverters, thereby

removing dependency on having the 128k size available for two of the RAMs. There

is no advantage folding 32k × 16 into 64k × 8, as 32k is scarce and more expensive.

The total cost for all the RAM is around US $30 in 2020.

Our term for a 6-bit subword is tribble, as it’s a multiple of three bits. This is

analogous to a byte in power-of-two word size architectures. Unfortunately, tribbles

are not wide enough to encode even US ASCII, which requires only seven bits;

however, Unicode has greatly eroded the usefulness of bytes for symbol

representation anyway.

Tables 3 and 4 show input and output bit assignments for all of the RAMs, and

appear mainly as assurance that enough wires exist on the packages. They don’t

require study for one to understand the ALU in general terms.

Table 5 summarizes opcodes this ALU implements by category. Many opcodes

don’t appear in this list, because their naming semantics for the assembler have yet

to be decided.14 Tables 6–13 show the mechanisms that implement the named

opcodes. The general format frst lists the assembler mnemonic on the left. A given

mnemonic can generate several diferent opcodes, depending on the signedness of

its arguments and results. For example, the mnemonic A (add) in Table 6 includes

overfow checking that requires awareness of the signedness of both arguments and

the result, and this awareness is supplied by using eight diferent opcodes for A. This

multiplicity is indicated in the second column. The next four columns indicate the

function select inputs for the three ALU layers and carry decision RAM. To keep the

tables compact and legible, these SRAM operations have single-character names,

and are described in further detail in Tables 14–19. The next column shows what

must be supplied as the right operand; by default this column simply reads “R”,

meaning the natural right argument of the intended operation is supplied.

14 For example, there is no mnemonic yet for reversing the bits of a word, although the capability is
present via a stacked unary operation.

45 April 9, 2020

4.2 Additive opcodes

Table 6 shows the basic addition and subtraction opcodes. The α and γ layers

provide carry-skip addition, with β not participating. An extra subtract operation is

ofered with the arguments reversed, a special provision for CPUs with fast hardware

multipliers.15 Subject to whether or not ”with carry“ is specifed in the opcode, θ

distributes correct carry decisions to γ. The INC, DEC, and NEG assembler

mnemonics don’t correspond to actual opcodes, but conveniently provide right

arguments for add, subtract, and reverse subtract. This is why these mnemonics

show zero for their number of opcodes.

Addition and subtraction are stratifed by signedness, causing six mnemonics

to assemble to 48 distinct opcodes, depending on the signedness of the arguments

and result. This permits not only mixed-sign arithmetic; e.g., add a signed register to

an unsigned register, but also alerts the CPU as to the signedness of the destination

register so that overfow is detected correctly. Section 4.11 ofers more specifcs as

to how these checks work.

4.3 Bitwise boolean opcodes

There exist sixteen bitwise boolean functions with two inputs, and as Table 7

shows, this ALU implements all of them. Interestingly, the individual layers only

implement a handful of these. α supplies the common AND and OR operations. β is

very limited in its fexibility to assist, because it’s operating on a transposed word.

The only change it can safely make is to invert all bits, thereby extending what α can

do to include NL, NAND, and NOR. γ doesn’t have enough space to ofer many

operations, because its carry input cuts in half the available space for their

implementation. But by XORing what arrives from β with the original right operand, γ

adds another fve operations. γ’s multiplex and kill operations manage to fll out the

remaining constants and identities.

15 The ALU’s arguments come from two copies of the register fle which ordinarily have the same
contents. The 72-bit result from multiplication gets split between these copies, causing that register’s
value to depend on whether it is the left or right operand of a subsequent subtraction.

46 April 9, 2020

Although the opcodes of Table 7 technically implement the boolean functions

listed, not all do so semantically. For instance, the boolean function NR (“not R,” or

bitwise invert) function theoretically ignores its left input, but this ALU cannot both

ignore its left input and invert its right input due to SRAM space limits. Instead, the

assembler has to substitute all ones in place of the left input register specifed in the

source code. This doesn’t present a problem for users, compilers, or assembly

language programmers, but it compromises style a tiny bit.

4.4 Compare opcodes

In Table 8, we fnd opcodes for compare and shift tasks. The maximum and

minimum operations are unusual in CPUs: traditionally a compare and branch is

used, but we accomplish these in one cycle. Not only this, but the two operands and

results can be of any signedness. MAX and MIN are implemented by having α and β

pass the left argument unchanged, and γ select between the output of β and the

right operand depending on whether the carry decision bits are all ones or all zeros.

θ is able to compute which argument is larger on the basis of tribble comparisons

made by the α RAMs and delivered via the propagate and carry wires.

The BOUND operation is intended for array subscripts. Although BOUND’s

implementation is the same as for ordinary subtraction, separate opcodes are

counted for BOUND so that the link editor can locate and optionally remove array

boundary checking. Additionally, BOUND does not write any result to a register. The

index tested is supplied in the right operand, which may be unsigned or signed but is

evaluated as if unsigned. The left operand is the bound. Hypothetically the bound is

always at least zero, but signed bounds are permitted to be passed (thus two

opcodes) in order to accept whatever data type the register is declared to be. The

operation performed is simply subtraction: the 2−36 bit will be set if the index is less

than zero or at least as large as the bound. The logic that monitors this bit and

interrupts the CPU is external to the ALU. BOUND will not work correctly for bounds

of 235 or higher, because indices that high will be interpreted as less than zero and

47 April 9, 2020

therefore not within bounds. But there won’t be enough memory for this problem to

appear.16 BOUND will never set the overrange fag; instead, the CPU is interrupted.

The CMP instruction does a simple comparison and is identical to subtraction,

except the control unit skips the step where the result is written to a register. It

likewise does not check to see if the diference fts in any particular format, and will

never set the overrange fag.

4.5 Shift and rotate opcodes

The shift operations in Table 9 have unconventional defnitions. Arithmetic shift

means multiplication or division by a power of two, rounding towards negative

infnity in the case of division. In traditional forums, arithmetic shift means that a

signed number is being shifted. But it’s moot whether the number is unsigned or

unsigned; what is important is whether the intent is to perform arithmetic, and if this

is the intent, the result must be tested for overrange irrespective of signedness. A

shift in the absence of any intent to multiply or divide is called in this proposal a

logical shift. Logical shifts are not tested for overfow, because the bits involved do

not represent quantities.

The logarithmic shifter is implemented by the β and γ layers. The shift and

rotate operations require the number of bit positions to be encoded into every

tribble of the right argument. The notation { R } means to suggest a vector with all

subwords having the same value. These identical copies can be provided by the

compiler or assembler if the shift amount is fxed; otherwise a stacked unary

operation (Table 22) is used to replicate the correct value into each tribble.

The γ layer’s participation in the logarithmic shifter is expressed in terms of

leftward rotation only, because RAM in that layer is very scarce. This means that all

shift and rotation operations are normalized to a left perspective, so to shift right

one position, the argument supplied must indicate a left rotation of 35 positions. The

stacked unary operations that prepare shift and rotate arguments account for this.

16 Someone who can aford a 236-word SRAM data memory won’t have a problem upgrading to a 64-bit,
3-layer ALU using 221 × 16 SRAMs, whereupon BOUND will give correct results up to 263 − 1.

48 April 9, 2020

There are four sub-cases (shift vs. rotate, 0−35 bits vs. 36+ bits) not elaborated on

here. Rotations in excess of 63 bits require extra instructions for the modulo-36

division needed.

Negative shift amounts aren’t directly supported by this ALU, because a signed

tribble can only represent numbers in the range −32 … +31, while the range of

shifting is at least −35 … +35. If a variable shift amount might have either sign, a

branch is required to straighten out matters.

Range checking for left arithmetic shifts is done in the α layer, which encodes

the signed and unsigned overfow result for each tribble onto the propagate and

carry wires. Two of θ’s output bits are the logical OR of its propagate and carry

inputs; these outputs return to the control unit so that overrange can be fagged.

4.6 Multiply opcodes

Although this ALU isn’t specifed with a hardware multiplier, it has several

opcodes that signifcantly accelerate unsigned multiplication in software. Table 10

shows the implementation for these. For short multiplication, the right operand

must be a factor in the range of 0 to 63, and replicated across all six tribbles. ML and

MH multiply across the tribbles of the left and right operands. MH throws in a left

shift to align with ML, so the results can be directly added for the fnal product. So if

a, b, c, and t are unsigned registers, 0 ≤ b ≤ 63, and a × b < 236, we compute c = a × b

in four instructions:

t = b copy 0 ; replicate tribble 0 of b across t
c = a mh t ; short multiply high tribble
t = a ml t ; short multiply low tribble; replaces t
c = c add t ; final product

Short multiplication when b is constant only needs three instructions, because

the compiler or assembler will provide the initial replication.

Short multiplication correctly detects the overrange condition, in which case

the result is of little value and might best be considered undefned. Section 4.10

49 April 9, 2020

gives more particulars.

Long multiplication can be emulated in software. For 36-bit unsigned integers

with 72-bit results, 53 cycles are needed. Except that we might not have CPU

microcode that dispatches these instructions transparently, this performance is not

far out of line from the Intel 80486, which required 18 cycles even to multiply by

zero, and up to 42 cycles for larger numbers.

Assembly code showing long multiplication appears in Listing 1. Two opcodes

not used for short multiplication include MHNS (“multiply high no shift”), which

multiplies tribbles pairwise but without shifting the result 6 bits to the left, and DSL

(“double shift left”), a which shifts the high tribble of the right operand into the low

tribble of the left operand. We also see COPe, which selects a tribble from the left

operand and replicates it six times.

The COPe opcode is actually a general call to any of the swizzles of Table 25,

where the frst six operations happen to copy the six tribbles by position. So COPe

with a right operand outside the range of 0–5 probably isn’t a copy at all. This opcode

may later be known by some other name, but is presently named for clarity as to

how it is used in this proposal.

4.7 Bit scan opcodes

Table 11 shows implementations for some scan and mix opcodes. LEAD and

TRAIL can be used for operations such as count leading ones. Here’s how they work.

Suppose we wish to count the leading ones on the word

111111 111111 111100 011100 111111 111111

and a unary function is available for α or γ that counts leading ones on a per-tribble

basis. That function returns the tribbles [ 6 6 4 0 6 6 ]. The LEAD operation scans

tribbles from left to right, and clears every tribble after the frst that is less than 6.

The expectation is that α’s count of leading ones starts from the left and continues to

be valid for as long as no zeros are encountered. Once α sees a zero it can fnish that

tribble’s count, but further results to the right from α do not count. So LEAD replaces

50 April 9, 2020

[ 6 6 4 0 6 6 ] with [ 6 6 4 0 0 0 ]. These six tribbles are then added together using the

most efcient operations on hand to yield the full count, which is 16 leading ones.

LEAD and TRAIL work because α has an operation that tests the tribbles of L

and R pairwise to see if the left tribble is lesser. θ receives those results via the carry

wires, and has left and right scan functions to turn on the carry decision bits for

tribbles left or right of the point where the bit count fell short. After that, γ has a

function that zeros any tribbles where the carry decision input is high.

Efciently adding the tribbles of a word together is a challenge, and involves

simultaneously applying various unary functions to diferent layers. This need occurs

not just for leading and trailing counts, but also determining the Hamming weight of

a word, sometimes called population count or simply popcount, which is a count of

the number of set bits in a word. For example, we might begin with

100000 011000 001110 110011 111110 111111

and use one of α’s unary operations to count ones, returning [ 1 2 3 4 5 6 ].

But now we have to add the tribbles. For this purpose α, β, and γ ofer 64 sets

of “stacked unary” functions, listed in Table 22, that are selected by the right

argument. One such set implements “add six sets of three bits to yield three sets of

four bits,” meaning a bit count of [ 1 2 3 4 5 6 ] can be reduced in one cycle to the sum

[ 0 0 0 5 7 9 ]. How might this work? Two three-bit addends can ft in a single tribble.

So α’s lookup table could shift the three leftmost tribbles three bits left. β could

move the three most signifcant bits of the three leftmost tribbles into the same

positions in the three tribbles on the right. γ could then look up the 4-bit sum for the

packed 3-bit addends on the three rightmost tribbles. By a similar process, the next

CPU instruction can reduce [ 0 0 0 5 7 9 ] to [ 0 0 0 0 11 10 ], by splitting the four bits of

the frst addend into the two unused bits of the two other tribbles. But as things

stand right now, the last addition will require two CPU instructions to shift the 11

addend right and complete the addition.

Thus we can obtain Hamming weight with no loops in fve cycles: count ones,

reduce to three addends, reduce to two addends, shift, and fnally add. Counting

trailing zeros uses six cycles: count trailing zeros for each tribble, TRAIL, reduce to

51 April 9, 2020

three addends, reduce to two addends, shift, and add.

There is a faster way to count leading or trailing bits in just four cycles by

avoiding the summation of six terms. It uses θ between α and γ to convert the word

input to a word with at most one bit set—the bit where the trail ends—in the frst

cycle. Cycles two and three use β to locate that bit’s tribble and ofset within the

tribble, and the fourth cycle adds the coarse and fne bit positions to give the fnal

result. There are a few subtleties and tricks, and the method doesn’t work for fnding

Hamming weights. Whether this approach matures into assigned opcodes, like the

fate of LEAD and TRAIL, is subject to available space and depend on the degree to

which other unary and stacked unary functions need to be included.

The NUDGE opcode adjusts the rightmost portion of a word, which could be a

pointer, to conform to a supplied template. This template consists of a start bit,

indicating the number of bits to replace, and the replacement bits themselves. For

example, 0111010 NUDGE 0010110 replaces the rightmost four bits to give the result

0110110 in one instruction. Without NUDGE, this process would require two

instructions and would happen as ( 0111010 AND 0001111 ) OR 0000110.

NUDGE is useful in part because many languages align memory that is

allocated to a small power of two. Reportedly, GNU malloc always returns a pointer

aligned to a multiple of eight, or on 64-bit machines, sixteen. To the extent a

developer is informed of the alignment and can rule out unexpected change, fast

access to various members of a structure can be available from close-enough

pointers. As an example, a node for a binary tree might have this form in C:

struct j {
 struct j *left;
 struct j *right;
 struct j *parent;
 ...
};

If we wish to disconnect some node n from its parent, we need to dereference

the parent member, then examine the left and right felds on the parent to see which

52 April 9, 2020

matches n, and set the appropriate one to NULL. That’s a lot of work. If struct j is

aligned to a multiple of four and NUDGE is available, there is a faster arrangement:

struct j {
 struct j *left;
 struct j *right;
 struct j **parent;
 ...
};

With this format, we can NULL the dereferenced word within the parent

without investigating which child n used to be. The difculty is that the parent

member is only useful for deletions, because it doesn’t know where within the

parent node it’s pointing. The NUDGE opcode eliminates this problem. If this C

program can access the NUDGE opcode, we can in one cycle locate any member of

the parent by nudging the parent pointer’s alignment within its known power of two.

More generally, we can compute the address of a structure member in one cycle

from the address of another member—even if we haven’t kept track of which

member the address calculation will start from.

NUDGE isn’t new, in the sense the same operation can already be done at half

the speed by using AND and OR. Moreover, the alignment behavior an implementer

chooses for memory allocation on an SRAM CPU may difer from conventional

processors. GNU malloc’s alignments to multiples of 8 or 16 are in fact just multiples

of two machine words, because many traditional CPUs address individual bytes. But

byte addressing and need for aligned memory boundaries might not apply to an

SRAM-based CPU. Similarly, the cache lines we ordinarily try to consider may not be

present on SRAM machines. So NUDGE might not become a big trend, but it does

serve as an example of overloading a carry decision mechanism for other uses. It’s

also a rare example of left-to-right carry propagation.

4.8 Bit permute opcodes

Table 12 shows how bit permutation opcodes are provided in the α and β

53 April 9, 2020

layers. Most software doesn’t need to permute bits, except for ordinary shifts and

occasional endianness changes, and only newer instruction sets ofer much beyond

these. So when an arbitrary rearrangement of a word is needed, historically a lot of

code and clock cycles are expended doing this rearrangement. A swap of even two

bits requires six instructions (isolate bits, mask out bits, shift left, shift right, or, or),

and an arbitrary permutation of a 32-bit word will take 32 repetitions of (shift, mask,

or) for 96 cycles.

SRAM ALUs ofer fast permutations, although how they are specifed has to

respect subword boundaries. Thus Intel’s PDEP and PEXT instructions for parallel bit

deposit and extract, available since 2013, can’t be mapped onto the architecture of

our research. Instead, we ofer one instruction for permutations inside tribble

boundaries, PIT, and another which permutes across these boundaries, PAT.

The more bits we need to move, the faster our ALU is compared to not having

bit permutation support. If we need to swap two randomly chosen bits, the

likelihood they are in the same subword or same position within a subword is about

30%. This lucky case requires just one instruction. The rest of the time, three

instructions are needed. But if we need a random permutation of a 36-bit word, the

kind that might need 108 instructions had we not planed for this need, we can

“always” do this in fve instructions. This is a big leap: it takes an average of 2.39

instructions to swap two bits, but we only need fve instructions to arbitrarily arrange

36 bits.

At present, I ofer a hierarchy of claims about how many instructions are

needed for 36-bit permutations. The operands to the instructions that produce these

permutations are tedious and ordinarily not suitable for manual computation.

Instead, an algorithm converts the desired permutation into the sequence of

instructions which accomplishes it. I can ofer you algorithms that succeed in

• 6 instructions, with proof, or

• 5 instructions, tested on 100 million random permutations, or

• 4 instructions, might fail, and takes quadrillions of CPU cycles to fnd out.

54 April 9, 2020

PIT is implemented in the γ layer. PAT uses the β layer and is simply a

transposition of PIT. It’s helpful to regard a 36-bit word as not a row of bits, but as a

6 × 6 matrix. Any corner may be used as the origin; the point is that each row of the

matrix represents one tribble of the machine word. Plate 19 shows how such a

matrix can be operated on. The matrix is the left argument to PIT, which operates on

the rows of the matrix, or PAT, which operates on the columns. The operation

wanted for each row or each column is taken from the tribbles of the right argument,

meaning we can invoke six diferent permutations on the six rows in one PIT, or six

diferent permutations on the six columns in one PAT. So the good news is that a lot

of things can happen at once simultaneously. The frst part of the bad news is we can

only move within rows or within columns during one instruction.

The second part of the bad news is that we aren’t aforded all the possible

permutations within the rows or columns in one instruction. It takes two instructions

to fully manipulate the rows or columns, because the tribbles in the right argument

can only distinguish between 64 operations, and there are 6 ! = 720 permutations

possible for any tribble. By composing two PITs or two PATs, and selecting twice from

the 64 permutations we do ofer, we can reach any of the 720 possible permutations

in all of the rows or columns.

Plate 19 shows how six bit permutation instructions combine to produce

arbitrary permutations of full words. The three steps are indicated by horizontal

arrows (two PITs), and vertical arrows (two PATs), with the colored matrices showing

the states before and after each step. A randomly-selected permutation appears in

the upper left “start” matrix. The numbers in each box show that box’s eventual

destination as its content—a zero or one—moves through each step. Every six

consecutive numbers is given a diferent background color, allowing visual

diferentiation of the subword each bit will end within.

In the frst transition, drawn as four arrows, each row is rearranged such that

no color appears in the same column twice, or equivalently, every column contains

every color. This guarantees that the second transition, drawn with vertical arrows,

will be able to move every bit to its destination row (tribble) without confict. The

55 April 9, 2020

algorithm for the frst transition works one row at a time without backtracking. The

frst row never requires adjustment. The second row of this example had no color

confict with the frst row. The third row contained three color conficts, requiring

relocation of the 16, 19, and 24 bits. The relocation algorithm is simply to try all 720

permutations, and use the frst permutation that does not confict with any

preceding row. Eventually all six rows are decided, and the six permutations chosen

are encoded into two PIT instructions.

A question appears as to how we know, for each tribble, which two

permutations selected from the 64 implemented are needed for any of the 720

possible permutations. We know either by trial and error, with a maximum of 4096

trials for each tribble, or from a 720 × 12-bit table in the compiler or assembler.

The second transition is represented with six vertical arrows, because every

column requires some adjustment for its bits to arrive in the correct rows. The

permutations needed for each column are found by iterating through all 720: one

and only one permutation will produce the correct result for each column. Two PAT

instructions cause the desired migration.

The third transition, drawn with six leftwards arrows, uses two last PIT

instructions to fnish the word permutation. Here again, each tribble has one and

only one correct permutation of the 720, although there will often be more than one

composition of two PIT operands that can produce it.

So there’s how arbitrary 36-bit permutations work in six instructions. What

about fve instructions? The second and third transitions don’t ofer any budget we

can cut, because we need all 720 permutations available for each subword—two

PATs and two PITs. The odds of being able to cover the second transition with a

single instruction appear to be ( 720 ÷ 64 )  6 against us, over two million to one. The

third transition has the same prospects. But the frst transition is fexible: any set of

row permutations that result in no color conficts within columns is acceptable.

There are many such sets, so we can try the frst transition experimentally on a

whole bunch of random 36-bit permutations, and see if we can succeed with just the

64 permutations the ALU has on hand. Of 100 million cases I tried, all 100 million

56 April 9, 2020

succeeded. So not only do we have a fve-instruction method, but it even has a

simpler algorithm to determine the instructions needed.

Now we consider the existence of a four-instruction, general permutation for

36 bits. Observe that two consecutive PIT instructions can only yield 7206 possible

outcomes, as there are only 720 orders six objects can be arranged in. But a PIT

followed by PAT or vice versa does not encounter this bound; each of these has 646

possibilities, and their combination is 6412. So if a four-instruction permutation

sequence contains PITs next to PITs or PATs next to PATs, the total number of

outcomes is at most 3 × 7206 × 6412 2 ≅ × 1039. This isn’t enough to ofer the 36 ! 4 ×≅

1041 permutations of 36 bits, so the odds of making this work with immediately

repeated PITs or PATs are 188 to 1 against.

If we can fnd 4-instruction random permutations of 36 bits, we must strictly

alternate PITs with PATs, where we are bounded by 2 × 6424 4 ≅ × 1043. This is

sufciently above the number of 36-object permutations to ofer, on average, 120

diferent ways of fnding each. But this does not guarantee that every permutation is

reachable, let alone ofer a fast algorithm for producing the four instructions.

We do have an algorithm to try to fnd four instructions. It’s applied twice for

completeness: PIT PAT PIT PAT and PAT PIT PAT PIT in either order. There is one

transition for each instruction, so if Plate 19 were redrawn for this operation, fve

matrices would be shown. The frst transition is carte blanche: arbitrarily select any

of the 646 = 236 PIT or PAT arguments. In practice, we would loop through all of them

until the algorithm succeeds. The second, third, and fourth transitions are identical

to the three transitions on Plate 19, except we strictly limit to 64 alternatives per

tribble at each step. Time complexity goes like this: the frst transition always

succeeds for its 236 variants, and the second transition succeeds an average of 820

times for each of the frst transitions. This estimate comes from simulation with

10000 trials. So this algorithm enters the third transition a total of 2 × 236 × 820

times, which is good because the combined odds of success in the third and fourth

transitions are presumably ( 720 ÷ 64 ) 12 to one against us, less than one in four

trillion. So if we run the entire experiment to completion for many random

57 April 9, 2020

permutations, on average we would expect to fnd around 27 sequences of four

instructions that can produce each permutation.17 This isn’t a guarantee there aren’t

permutations which no series of four instructions can reach, but the chances of

succeeding often at least appear pretty good. But the problem is CPU time: if you tell

an assembler or compiler “I want the permutation     , fgure it out and do it in

four cycles,” it has to come out of the second transition successfully to try the third

and fourth about four trillion times. This computation would take decades of CPU

time on average to fnd the frst working sequence of four instructions. Although the

search is easily parallelized, we will ordinarily settle for fve instructions.

Implementing our bit permute instructions requires selecting 64 permutations

of six objects for the ALU to support out of the 720 possible. There are three criteria

we want this subset of 64 to satisfy:

1. All 720 permutations must be available by composing at most two from

the chosen subset.

2. All permutations of 36 bits must be available in fve instructions via the

chosen subset. This will be true if the frst transition always succeeds in

one instruction.

3. The subset’s permutations should not be too “esoteric,” to give the best

chance of accomplishing simple permutations in just one instruction. For

instance, the identity permutation should be among the 64 chosen.

The permutations chosen for this ALU appear in Table 23. From the above list,

only criteria 1 and 3 were used when these permutations were selected. The middle

requirement was left to chance, although there is more to say about that shortly. The

order of items in the table is roughly the order I dreamed them up. Bit ordering in

this table is not the conventional 543210 that would be used for arithmetic, but

012345 in order to make these permutations more spatially understandable by

programmers. So the identity permutation is 012345, and exactly reversing the bits is

17 This expected value of 27, which relies on multiple assumptions of uniformity, is within an order of
magnitude of the preceding paragraph’s expected value of 120, which is more dependable.

58 April 9, 2020

543210. Table 23 was produced iteratively: I would think of permutations to add to

the set, and then I would use a greedy algorithm to add as few permutations as it

could to make the set “720 complete.” The minimum size needed for this

completeness grew slowly. The more permutations I added to the subset, the fewer

the algorithm needed to add to reach 720 within two instructions. So I might fnd I

had 20 left to choose, and after choosing 10, I’d fnd there were still 15 left to choose.

In the end I was able to choose 58 of the permutations by the seat of my pants, and

the algorithm only needed to choose six. But I couldn’t have chosen these last six

without automation.

If someone had to design an unusually crowded ALU, possibly using the same

function select inputs for permutations and swizzles, perhaps there wouldn’t be

room to include 64 permutations. How small a subset would still work? As

26 + 262 = 702, it’s clear that a minimal set will have at least 27 elements. I haven’t

succeeded at computing such a set, although I spent more than 18 months of CPU

time trying. But there wasn’t a lot of human efort expended. The algorithm I wrote

had a fast implementation in C, but a better-considered algorithm might have a

faster implementation.

During the search, I found four subsets of 30 permutations that can reach all

720 within two instructions. The frst of these appeared in just hours, before I was

even looking at the program output consistently before clearing the screen. I was

stunned when I saw it, because I knew by that time that a set that small is very

difcult to compute, and the search of that time ran 275 times slower than it would

after I ported it from Python to C. Table 24 shows this set of 30 permutations.

Importantly, the subset of 30 permutations cannot always implement whole-

word permutations in fve instructions. Sometimes there isn’t a one-instruction

solution for the frst transition: in 100 million trials, nearly 1.80% of the cases did not

succeed. When this happens, the next thing to try is swapping PIT and PAT, which will

usually resolve the issue. So the set of 30 works in fve instructions most of the time,

but needs six instructions about one time out of every 3000 permutations needed.

This very high success rate with just 30 permutations in the subset gives me a lot of

59 April 9, 2020

confdence that the much larger set of 64 permutations, having exponentially larger

opportunities to fnd solutions, will always be able to permute 36-bit words in fve

instructions. Certainly in the absence of proof, compilers and assemblers need a

tested fallback to generate six instructions for word permutations. This fallback is

trivially implemented by ordering the 64-subset with the identity frst, only writing

code for for the 720-permutation searches (not bothering to try 64 frst), and

suppressing output of identity permutations. This scheme has the added beneft of

exploiting any one-instruction or identity transitions when only a few bits are being

moved.

4.9 Mix opcodes

Opcodes for mixing are stated in Table 13. MIX maximizes the ALU’s capacity to

use S-boxes quickly for hashing and pseudorandom number generation. This ALU

contains 64 × 18 = 1,152 diferent S-boxes; that is, 64 S-boxes for each RAM in the α,

β, and γ layers. They are applied to the left operand by the MIX instruction, and

selected by the right operand. This implements a key-dependent mixing operation

for 36 bits in one machine cycle. The mixing needs to be iterated for a number of

cycles with diferent key material supplied as the right argument. Every bit of the

36-bit output from MIX depends on every input bit. If exactly one input bit changes,

the expected number of output bits that change has not been computed, as this

quantity is easier to determine by simulation than by messy combinatorics and

probability theory. As a simulator will be forthcoming, I’m inclined to wait for it. A

simulation also is less likely to err.

Another estimate to be obtained from simulations is how many rounds are

desirable for various applications. Possible measures include using Brown’s

Dieharder test suite for random number generators [19], as well as using self-

organizing maps to see how long visible features can be distinguished in the MIX

output.

The XIM opcode reverses the MIX function. Words of the key must be provided

60 April 9, 2020

correctly and in reverse order to recover the original input. The S-boxes for XIM

derive easily by inverting the MIX S-boxes, and swapping between the α and γ layers.

MIX and XIM have potential for use in cryptography, provided that experts

specify and validate the ciphers. This is a specialization I am not qualifed in, but here

are a couple of problems with these operations. First, I have specifed S-blocks that

are not optimized in any manner against diferential cryptanalysis. This is somewhat

on purpose: optimizing for a specifc attack could break a cryptosystem with respect

to some other, unanticipated attack. Most eforts to design attacks against block

ciphers and S-blocks are done in secret. So although the S-blocks specifed are

potentially terrible with respect to diferential cryptanalysis, I can’t charge forward as

if diferential cryptanalysis is our only concern. My approach here is not shared by

contemporary standardization processes for ciphers: the safeguards I neglect are

considered mandatory for new cipher submissions to standards bodies. I’m all right

with this, and I won’t be submitting a new cipher. And as diferential cryptanalysis

attacks go, many that show “breaks” in the literature are not practical against

deployed systems. The scope of these and related considerations is large and

outside of our proposed research.

The other problem with MIX and XIM for secrecy is the 36 bit block size is too

small and cannot be enlarged easily. The key would need to be changed with just

about every packet sent or received due to the potential for birthday attacks, as

collisions in real-world protocols have been demonstrated for considerably larger

block ciphers [20]. Although special cipher modes have been designed to expand the

birthday bound [21], 36 bits is still too small a block for these new modes to be of

much help. But implementing a cipher for larger blocks requires that we choose

between either many more instructions per word encrypted, or a much bigger circuit

board.

The block size threat, infelicities of S-box selection, and other problems to be

identifed do not preclude efcient use of MIX and XIM for secure communication

and authentication. But they do put the problem above my pay grade, so I have to

recuse myself with respect to cryptography.

61 April 9, 2020

Listing 2 shows a Python 3 specifcation for the MIX opcode’s suggested

S-boxes. The boxes are flled from a so-called “nothing up my sleeve number,” which

presumably I haven’t enough control over to build a backdoor into. I opted to use an

easy-to-compute irrational number, rather than have to store a long number, or

make people go fnd it online or compute it with some utility, and then still have to

parse it.

The square root of one half 0.7071 is possibly the easiest irrational of all to ≅

write code to compute; also it converges really fast using Newton’s method. Listing 2

does this using Python’s built-in arithmetic for large integers. We compute the frst

341,000 bits of our irrational in a few moments, and then start multiplying by the

number of choices remaining in whichever S-box we’re working on. The bits to the

left of the implied decimal point become our “pseudorandom” number, and the bits

to the right become the remaining irrational number for subsequent extractions.

For the beneft of people testing alternate implementations: the fnal S-box

computed is for the leftmost γ tribble with right operand 63, and is [ 2 52 22 7 17 63

12 56 38 48 44 4 29 10 30 8 21 54 28 25 62 15 49 32 11 18 42 43 36 19 24 61 3 35 6 39

16 31 53 40 46 34 27 9 58 5 37 20 50 14 57 33 59 51 55 1 0 45 47 41 13 60 23 26 ]. The

output is the same if more than 341,000 bits of the irrational are computed, but if

the length is reduced below 340,987 bits, the output destabilizes due to premature

exhaustion of numeric precision.

4.10 α layer operation

Having described the opcodes to some extent, here are some specifcs as to

the SRAM layers which do the computations. Table 14 shows the overall function of

the α layer, particularly the function of the four function select bits into α0–α4. As we’ll

see in a moment, α5 works in the essentially same manner with one alteration.

Most commonly, α provides bitwise AND and OR, and the frst layer of a carry-

skip adder for addition, subtraction, and reverse subtraction. These are the slots

named α.&, α.¦, α.+, α.−, and α.m. For the three additive operations, appropriate

62 April 9, 2020

propagate and carry signals are generated.

There are two identity operations in this layer. The frst is α.=, which also

examines the left and right operands and sets the propagate and carry outputs to

indicate which is larger for each tribble, or if equality holds. The other identity is α.o,

which also determines if a left arithmetic shift would overfow on the basis on the

bits each tribble contains. For α.o, the propagate and carry bits are coded to indicate

whether signed and/or unsigned overfow will occur during the shift.

The α.s and α.S operations provide S-box mixing. The left operand is the input

word, and the right operand contains the key material (which S-box to apply) for

each tribble. The forward mix is α.s and has inverse γ.S; α.S is the inverse of γ.s.

Up to 64 unary operations, selected by the right operand, are provided by α.u.

These operations can be mixed and matched across tribbles, so up to six diferent

unary functions can be applied simultaneously during one instruction. Table 21 lists

some anticipated operations which, depending on the ALU function select lines,

might or might not be used in combination with the other layers. Some might be

given assembler mnemonics in the future. Right now, none use the propagate or

carry outputs.

Because α.u requires a right operand, which is copied to layers β and γ, we

cannot have those layers implement a diferent unary operation during the same

instruction. But there are a few combinations of operations between layers that

would be frequently used, although for each combination the right operand must be

held constant. This is the purpose of the “stacked unary” operations, implemented

via α.w, which are assigned right operands coordinated across all three layers. Table

22 shows a list of currently known stacked unary operations. Unlike α.u, α.w has

control over the propagate and carry signals and can make use of them.

The NUDGE operation from Section 4.7 begins with α.n, which presumes that

for every tribble, the leftmost set bit of the right operand is the start bit. That

tribble’s output is adjusted according to the NUDGE specifcation, and its carry

output is set. θ and γ will assure that only the actual start bit is treated as such; all

tribbles right of the start bit will be replaced with the right operand during γ.

63 April 9, 2020

Tables 14 and 15 also summarizes the propagate and carry outputs for α’s

operations. Table 16 explains these outputs in fner detail.

Signed right arithmetic shifts must replicate up to 35 copies of the 2−35 bit,

ordinarily misnamed the “sign bit.” β can handle most of these replications, but the

transposition between α and β only distributes the 2−35 bit to the β5 RAM. The α.r

operation solves this by handling the sign extension for the leftmost tribble prior to

transposition.

α does most of the work for short multiplication. By “short,” we mean the

product fts in one word, both factors are unsigned, and the right factor fts in one

tribble (is less than 64). These conditions support a fast multiplication operation with

no loops. When tribbles are multiplied pairwise between the left and right

arguments, the result of each multiplication is 12 bits instead of 6, so there are

separate operations, α.x and α.X, to fetch the low and high tribbles of the results. The

high bits must be shifted one tribble left, with overfow checking, to align their place

values correctly. This is done during the same instruction as the tribble high

multiplications, with α providing the range check and β providing the 6-bit left

rotation. So short multiplication by a variable amount is done in four instructions:

COPe, ML, MH, A(dd). Short multiplication by a tribble constant uses three

instructions: ML, MH, A.

Because β rotates instead of shifts for the MH opcode, overfow won’t just

wrap modulo 236. Rather, the high word of the result will be added to the low word.

Either scenario would be given an incorrect result, but this one avoids the need to

allocate a slot in β for an express left shift. In any event, the overfow fag is set

correctly and can be checked at a convenient time.

The α.* operation overwrites the most signifcant tribble of L with its

counterpart in R. This is half the work required by the DSL opcode, which has β

rotate the outcome six bits leftwards. The efect is that L is shifted one tribble left,

with its new low tribble shifted out of the high tribble of R. What’s that spell?

Unsigned long multiplication with a 72-bit result in 53 instructions. Listing 1 shows

the full assembler code.

64 April 9, 2020

Layer α is now full except for unallocated unary operations. Expanding α for

binary operations is costly: the next operation would add 7 Mibit to the ALU. We’ve

accomplished a lot using the small RAMs this layer contains.

4.11 α layer operation, leftmost tribble

The α5 RAM is charged with extending words that are to be added or

subtracted to 37 bits, so that full-time detection of wraparound and capacity to do

mixed-sign arithmetic both happen. As Tables 4 and 3 indicate, this output connects

directly to γ5 and bypasses the β layer. To extend the sign correctly, as well as to

compare magnitudes correctly, α5 has to know the signedness of both operands. This

requires that the =, +, −, and m operations of α0–α4 be stratifed by signedness into

16 diferent operations for α5. These additional operations appear in Table 15.

The diferentiated operation of α5 is not compatible with the control inputs for

the rest of layer α, so the control unit must provide additional bits. The slots are

ordered in a way that lets α5 reuse the two least signifcant control lines of α0–α4. No

further reuse is possible, so the control unit (a circuit outside the ALU) extends three

additional bits to α5 to select among its 32 operations.

Final overfow determination is not done by α, but by the control unit using

output from θ and γ. Table 20 shows how wraparound is ultimately caught as a

result of α5’s sign extension.

4.12 β layer operation

Table 17 shows the operations for β. In this table, α and αT refer to the output

of the α layer immediately prior to and just after transposition, respectively. The

identity is β.= and simply keeps out of the way. The fve operations β.ℓ, β.L, β.R, β.{,

and β.} form the frst layer of the logarithmic shifter, providing left rotation (β .ℓ),

logical and unsigned arithmetic shift (β .L, β.R) , and signed arithmetic shift (β.{, β.}).

Note for the signed shifts, α had to sign extend the leftmost tribble in order to get

the sign to all places needed in β. The second layer of the logarithmic shifter consists

65 April 9, 2020

only of γ.ℓ.

S-boxes are provided by β.s, and the inverses of these same S-boxes are in β.S.

Stacked unary operations (see also Table 22) are β.w. There are no “regular” unary

operations so-named, as these turn out to be swizzle operations. They’re accessible

at β.z and described in Table 25, which still has a lot of space to be flled in.

β.! and β.^ do bitwise negation and exclusive OR. Negation sees heavy use by

this layer, as the other two layers don’t ofer it. Negation and identity are the only

two β operations where this layer’s transposition is irrelevant. XOR via this layer is

interesting and would probably see rare use. One use might be with a zero left

argument, causing the output to be the transpose of the right argument.

β ofers a 6-bit left rotation in the middle layer irrespective of the right

argument. This operation is β.*, and is used by the “multiply high” MH opcode as well

as the “double shift left” DSL opcode for short and long multiplication, respectively.

This is really an ordinary swizzle we would rather use β.z to implement, but we have

no mechanism to simultaneously deliver diferent right operands to α and β.

Lastly, permutations on the transposed tribbles at the β layer are provided by

β.p and used by the PAT opcode, as explained in Section 4.8.

β has unallocated space for two more operations. Dissertation research may

uncover noble uses for this space.

4.13 γ layer operation

The γ layer is the last row of the carry-skip adder and also implements other

functions listed in Table 18. In this table, β refers to the output of the β layer after

transposition back to ordinary word confguration. This table difers from α and β in

that only eight slot numbers are available for operations, as the need for a carry

input reduces the γ RAMs’ address space by one bit. But as only four operations

actually require a carry input, the four remaining slots can use the carry wire as an

additional select bit. Recall that the carry decision input does not come from the

CPU’s carry fag, but from θ, which ofers full control over the carry decision signal.

66 April 9, 2020

So as of this writing, γ can do as many as twelve distinct operations.

If there is a “main” operation for this layer, it’s γ.+, which increments any tribble

(with wrapping) that has its carry decision bit set. This is used for addition,

subtraction, and cases where γ makes no changes to the word. For these identity

operations, θ is programmed to zero all of the carry decisions.

There are two multiplex operations for this layer. γ.? outputs the right operand

of tribbles with their carry decisions set, and the left operand of the remaining. Its

main use is the MAX and MIN opcodes, where two operands are supplied, compared,

and one is selected for output. γ.k supplies the same operation, except that zeros are

output in lieu of the right argument, thereby freeing the right argument for other

uses. This permits LEAD and TRAIL to zero out tribbles that appear left or right of a

decision point.

γ.w has its right argument coordinated with α.w and β.w to supply stacked

unary operations on words. There is great fexibility with these 64 operations, except

that none have a right argument available for use. Table 22 lists the stacked unary

operations that have been assigned to date.

γ.s provides the 6 × 64 = 384 forward S-boxes for this layer. The inverse of α’s

S-boxes are available in γ.S. More detail appeared in Section 4.9.

γ.u provides unary functions that can be fully contained in γ and don’t require

any memory from the other SRAM layers. These functions are also available in α and

are listed in Table 21.

Of this ALU’s two exclusive-OR processes, γ.^ is the most canonical. It’s used in

7 out of 16 bitwise boolean opcodes, making it the most-often specifed non-identity

logical operation. XOR with one input transposed is available in β, from which

ordinary XOR may be composed in two cycles with a choice of transposed or non-

transposed output.

γ.ℓ provides the second stage of a logarithmic shifter. Only left rotation is

provided at this layer; masking and range checking for shifts are via β and α

respectively. As with the other layers, the shift or rotate amount must be replicated

across the tribbles of the right operand.

67 April 9, 2020

γ.p supplies the PIT opcode’s permutations in accordance with Section 4.8.

At this time, there remain either two unallocated spaces for operations not

requiring carry decisions, or one space for an operation that needs carry decisions.

4.14 θ operation

The θ SRAM is a single 64k × 16 chip that acts partially like an extension to the

control unit. It specifes the right-to-left behavior of carry for addition and

subtraction, the left-to-right priority of tribbles for magnitude comparison, a latch

function for bit scanning, and an ability to force its output to all zeros or all ones for

overloading operation slots in γ. These operations are shown in Table 19.

θ.+ is the ordinary carry propagation mechanism: for any tribbles with the

propagate input set and the carry input clear, the carry decision will be identical to

the carry decision from one tribble to the right. This behavior is recursive. There is no

carry input from the right of tribble zero.

θ.c is the same as θ.+, except that the CPU’s Temporal fag from a previous

addition or subtraction is included when carry decisions are calculated.

θ.< and θ.> interpret each tribble’s propagate and carry inputs as defned in

the “compare” column of Table 16. The overall function is to decide which, if either,

of the left or right operands is lesser or greater. Priority is given to the decision from

the leftmost tribble. The result of the overall comparison is distributed to all carry

decision outputs identically. These operations are primarily for the MIN and MAX

opcodes, but conceivably could have other uses.

The purpose of θ./ is to allow underinformed decisions that are made in

isolation by the α layer’s SRAMs to be overruled within the γ layer. The / symbol is

chosen to suggest a rightward motion. The premise is that the output of a bit

scanning, counting, or NUDGE operation in α is valid until some condition is met. The

α RAMs all scan for this condition and set the carry lines true in tribbles where the

condition appears. θ./ turns on all of the carry decision fags to the right of the

leftmost tribble where the condition appeared, thereby instructing γ to apply some

68 April 9, 2020

alternative calculation to the remaining tribbles. The leftward counterpart to θ./ is

θ.\. A corresponding operation to force the carry decision to zero uses the propagate

bits instead of the carry bits. Finally, an operation to invert the previous carry

decision is signalled by setting both the carry and propagate bits from the same

tribble.

θ.0 and θ.1 force all carry decisions to 0 or 1 simultaneously. These are used to

suppress carries for non-additive functions, or to partially specify slots within γ for

operations that do not require carry decisions.

4.15 Miscellaneous unary operations

Computations with only one input generally use the left argument, leaving the

right argument free to specify which of 64 operations to compute. This afords SRAM

ALUs a lot of freebies we wouldn’t otherwise enjoy. The simplest cases occur when

everything is done within 6-bit subwords, and the tribbles are completely

independent of each other. These are merely lookup tables, and can be used from

either the α or γ layer.

Table 21 provides a list of the simple unary operations that are specifed to

date. Note that the right operand is specifed on a per-tribble basis, meaning that up

to six operations from Table 21 may be applied across a word during one instruction.

Slots 0–8 provide constants 0, 1, and all ones, pass-through and bit inversion, and

tests for zero and nonzero with output alternatives. Slots 9–14 ofer counts of zeros

and ones with total, leading, and trailing options. Slots 15–16 allow tribbles to be

individually incremented and decremented.

Slot 17 is the sole operation where the tribble outputs are not identical when

given the same input. The left input is a number between 0 and 63, and must be

provided across all six tribbles. The right input is 17 (the operation to perform) in all

tribbles. The result is the largest 36-bit word the left input can be multiplied by

without overfow, assuming the product is unsigned. Another way to view this

operation is as a fxed-point reciprocal of the input value, with all ones output when

69 April 9, 2020

dividing by zero.

Table 22 lists more complex unary operations. These require participation of

multiple layers and sometimes need θ to support operations across subwords. For

this reason, the slots specifed by the right operand are numerically consistent from

layer to layer. The name “stacked unary” arises from the involvement of these lock-

stepped layers.

Slots 0–2 are a mild instance of self-modifying code, because they permit a

word to be negated, zeroed, or left intact on the basis of their right argument. That

right argument is computed by a previous stacked unary operation, either slot 3,

which identifes whether a word is negative or not, or slot 4, which distinguishes

between zero, negative, and positive slots. Using these operations, absolute value

can be composed in two instructions, and a sign or signum can be copied from a

signed number onto a positive number in two instructions. It remains to be seen

whether absolute value will detect overfow when the input is −235. Slot 4 employs an

of-label repurposing of θ.> to determine if any tribble of α is nonzero and quickly

disseminate that information to the carry decision inputs of γ. The 2−35 input bit for

slots 3 and 4 are copied across tribbles via layer β.

There is a one-instruction absolute value operation in slot 5; however, it only

works if the result is less than 230. This operation depends on the fact that tribble

addition and subtraction doesn’t ever need to set the propagate and carry outputs

simultaneously, allowing simultaneous appearing of these signals to be interpreted

as a special condition. This has a brief footnote in Table 16. The α layer assumes the

input is negative, but does not invert the bits. But it does output propagate and carry

signals as if its bit-negated input were being incremented; e.g., α initiates a sign

reversal, but does not alter the word. α5 operates diferently: α5 outputs all ones if

the 2–35 input is on, and turns its propagate and carry of. Otherwise, α5 outputs all

zeros and turns its propagate and carry on. When β receives the transposed input

word, every tribble now has a copy of the 2–35 bit, allowing β to invert the 30-bit word

if the input was negative. β will also ensure that γ5’s inputs are all zero. The carry

decision RAM θ is doing an ordinary carry decision as for add and subtract, which γ

70 April 9, 2020

then uses to increment the 30-bit word that β negated—provided the left argument

was negative. But if θ sees the propagate and carry bits both set from α5, a condition

never occurring for other additive operations, θ aborts and sets all carry decisions

zero, because the left argument was not negative as presumed. With no carry

decision inputs, γ won’t alter its input from β, which didn’t invert its input from α,

which doesn’t modify its input to begin with. Thus via a spectrum of down-the-rabbit-

hole kludges, we have absolute value in one CPU cycle. But it only works up through

30-bit words, and it is not known yet whether out-of-range arguments will be

detected by this operation.

Slots 6–9 are used by shifts and rotates where the number of bit positions is a

computed value not known by the assembler or compiler. The left operand is the

desired number of places in tribble 0 and is a positive value; the remaining tribbles

are ignored. The output is the right argument for a rotate or shift operation. The

overall process is described in Section 4.5.

Slots 10 and 11 are used to add the subwords within a word efciently. This is

useful for operations such as Hamming weight, where the number of ones in each

tribble are indicated and we desire the total number of ones for the entire word.

Slot 10 adds six numbers between 0 and 6, and outputs three numbers between 0

and 12. To achieve this, α replicates the three lowest bits of each tribble into the

three upper bits, β packs the six tribbles into three, and γ splits each tribble into two

three-bit halves and adds the halves together. Slot 11 further eliminates one of the

addends by distributing one of the four-bit inputs into the two remaining bits of each

of the other tribbles, which are replaced by sums of up to 24 and up to 15 in those

two tribbles. Regrettably, adding the last two tribbles requires two instructions.

Slot 12 reverses all bits of the left operand in one machine cycle as conceived.

The PIT and PAT instructions can do this also, but they require two machine cycles.

Slot 13 computes the parity of a word, returning a single bit to the right of 35 zeros.

Slots 14 and 16 are special increment and decrement operations on words.

They are not checked for wrap-around, and are intended for use when wrap-around

should not be checked, such as for Section 4.16’s leading and trailing bit

71 April 9, 2020

manipulation. Bit-reversed increment and decrement occupy slots 15 and 17,

wherein the least signifcant bit is leftmost instead of rightmost. Slot 18 gives bit-

reversed negation of a signed word, also without checking for wrap-around.

4.16 Leading and trailing bit manipulation

Several CPUs, including recent x86s, have instructions for trailing bit

manipulation. These instructions scan from the right for the frst zero or one, and

upon fnding can invert that bit, isolate the bit by masking out all others, fll up to the

bit from the right, mask with ones up to the bit and zero bits to the left, or mask with

ones through the bit and zero the bits to the left. Some of these instructions are

available with complemented output. Not all cases are covered by these CPUs, and at

least x86 doesn’t support leading bit manipulation; that is, scanning from the left.

The full set of these manipulations could be implemented by our ALU as

stacked unary operations for leading and trailing use, making them accessible via

one instruction. But there are 40 of these: search for 0 vs. 1 × invert output or not ×

leading vs. trailing × fve “what to do.” This would be a lot of address space to set

aside for these rarely-used operations, so we haven’t. Instead, all 40 can be

accomplished in two instructions by composing already-existing operations:

leftwards and rightwards increment and decrement from Table 22 and the bitwise

boolean opcodes from Table 7. These 40 formulations are tabulated compactly with

examples in Table 26.

72 April 9, 2020

5. IMPLICATIONS

5.1 Characteristics of surrounding CPU

SRAM is as useful for implementing CPUs as for ALUs, although the work

proposed is for ALUs exclusively. That being said, we can predict some

characteristics of these CPUs. They are important to note for three reasons. First,

they explain otherwise unexplained inclusions in the ALU. Second, they result in

crucial security improvements that motivate our whole undertaking. Third, they

encapsulate knowledge that is soon to be very useful.

Static RAM is much faster, more secure, simpler, and more costly than dynamic

RAM. I’m fne with three out of four. Unless a computer is to be airgapped, DRAM

should not be used for central processing. Bufer memory in an attached storage

device might use DRAM, provided that device is carefully isolated. Perhaps an

attached monitor has a lot of DRAM, although monitor security is a whole new

dissertation topic. But for network cards [22] and main memory [16], DRAM is out.

The Von Neumann architecture where programs and data nest in the same

physical address space make assurances of segregation difcult and introduces

vulnerabilities. It also creates bottlenecks due to simultaneous needs. Complex

workarounds have been implemented in VLSI, which themselves have come with

unwelcome surprises. Everything will be simpler with a Harvard architecture, where

program memory is on physically separate silicon, and instructions that write to

program memory are privileged and identifable from their opcode alone. No such

instructions are to even appear in unprivileged code, and this restriction is

enforceable in code as it gets loaded.

The instruction format is minimalist and works like this: 9-bit opcode, 9-bit left

operand register, 9-bit right operand register, 9-bit destination register. That’s almost

our whole world. For branches, a 9-bit opcode and 27-bit absolute destination.18

18 The instruction word format is illustrative and may be widened, in which case stated limits change.
But this 27-bit space costs about $7500 to fll as of early 2020 and provides 576 Mibytes of program
storage. It’s unlikely we can audit a program of that size, so we probably shouldn’t run one.

73 April 9, 2020

There are no relative branches: we don’t need them. Relocatable code remains

possible by resolving addresses at load time. There are no indirect branches; these

ofer a rare speedup such as pointers to functions, but can be exploited to dislodge

the program counter from ground truth. Consequently, there are no subroutine

return addresses either in data memory or registers. This doesn’t mean there are no

subroutines, but it does mean control always returns to the right home when these

routines end. We will have to forego setjmp and longjmp in C-like languages. There

is no recursion and no stack overfow. This worked out fne in old FORTRAN, and it’s

still a good idea today. Code can be made recursive where necessary, but whatever

stacks are needed are allocated from the heap, and in no way relate to the program

counter.

This is a multitasking CPU, so care was taken to design an ALU with no retained

state. We don’t want special hardware for context switches, nor undue delay, so all

registers are stratifed by user, a small integer akin to a process id. As the operand

registers are 9 bits, there’s enough space for a 7-bit user to index two 64k × 18 RAMs

as the register fle. When control is transferred to another user (that is, process), not

a single register needs saved or restored. The only change is the 7-bit user identifer.

The CPU at liberty to change users with every machine cycle with no penalty; in fact,

the CPU can be made faster by doing so. More about this in a few moments.

The program counter also resides in a RAM and is stratifed by user. It is

neither saved nor restored during context switches. As this RAM doesn’t need to hold

registers, one might think it can be smaller than the register fle RAM. Actually, it’s

the same size, because it’s not a program counter RAM. It’s a subroutine return

address RAM, and the top of each user’s stack is the program counter for that user.

The only nonprivileged instructions that manipulate this stack are calls and returns.

Underfow is not permitted; returning from the top level either causes an interrupt

or simply has no efect. I prefer no efect, because the semantics, implementation,

and auditing are simpler.

The fags also reside in RAM. At a minimum, there are fags for zero, negative,

temporal range, and range, denoted Zero, Negative, Temporal, and Range. Flags Z

74 April 9, 2020

and N are familiar and appear in other processors. T indicates that the most recent

instruction that could cause arithmetic overfow did, in fact, cause overfow. It’s

analogous to the carry fag on familiar architectures. R is set whenever T is set, but is

only cleared by a fag manipulation opcode. This permits tedious or lengthy

calculations to be implemented with no overhead or distraction for checking, and

when it eventually must be known if overfow occurred, the R fag can be inspected

just once.

Design choices remain to be made around fag handling, such as whether Z, T,

and N persist across calls and returns. As the program memory’s physical address

space is only 27 bits, the return address SRAMs might have unused width where

fags can be stored for free. In fact wherever fags are stored, there might be some

extra bits available, so the design may provide extra fags. These could have names

like X-ray and eankee, and ofer extra amenities for the programmer.

The data memory’s hardware protection uses a one-layer SRAM page lookup,

indexed by the memory segment and user. For example if 4 Mi words of RAM are

installed, the physical address space is 22 bits, possibly arranged as a 9-bit page and

a 13-bit ofset, making the page size 8192 words. The physical page comes from a

RAM that is indexed by the 9-bit logical page with the 7-bit user. In contrast, the

program memory doesn’t need any hardware protection or page relocation: every

branch is absolute and stored alongside a branch opcode, so the loader easily

allocates program memory and segregates users securely.

Because the program memory is not protected by hardware, and branches are

always to immediate values, dynamic linking is very simple, and calls into the

operating system and libraries are easily restricted to designated entry points. But

an argument passing mechanism would need to be worked out. For the most part, I

am not an advocate for dynamic linking (too many dependencies), but I am not a fan

of so-called “containers” either (too much bloat).

A problem crops up implementing the program counter: there aren’t any

decent counter chips on the market, and possibly never have been. There aren’t

even particularly good shift registers, although tristate latches can be found. This

75 April 9, 2020

doesn’t bode well for ripple carry, or for that matter any other carry, and using an

SRAM carry-skip adder seems overkill for this use. My suggestion is to use a shift

register with feedback instead of a program counter, either outright across the entire

address space, which has drawbacks determining what memory belongs to which

user and challenges supporting multiple memory sizes, or in segments of perhaps 13

bits where a branch to cross into the next segment appears every 8192 instructions.

This would not be the frst CPU to use a shift register as its program counter with a

mechanism to switch pages. The TMS 1000 microcontroller, introduced in 1974 by

Texas Instruments, worked exactly this way.19 One perquisite of the paged approach

for our multitasking CPU is that code fragmentation becomes of no concern.

The 512 registers available for each program running will eliminate most loads

and stores. As long as the registers are not exhausted, they can referenced in

programs by variable name instead of by number, with fnal register allocation done

by the linker or even the program loader. The number of registers needed is no

greater than the number of variables simultaneously in scope. Data structures will

continue to live in normal data memory, both to conserve registers and because no

indirect register access will be supported.

By increasing instruction word size beyond 36 bits, still more registers can be

added per user at the cost of reducing the number of programs that can run

simultaneously. Alternatively, a very wide instruction word can allow programs to

access any or all registers in the system, 65536 at a minimum. The kernel would

allocate registers to programs as they are loaded, so that specialized applications

that call for a large number can be accommodated, while no registers are held back

from use simply because only a few programs are running.

There is no security issue letting the loader allocate registers, because running

programs can only access the registers that appear in their object code, and the

system controls the loading of that code. But there is an ironic cost when increasing

the program word size to, for example, 64 bits (262144 registers and a 10-bit

19 TI did not document this 6-bit counter’s operation, so for posterity, ABCDEF (new) = BCDEFG, where
G = ( A XNOR B ) XOR NAND( BCDEF ). The complexity is to make the period 64 instead of 63; otherwise,
G = A XNOR B would have been adequate. Formulas derived using assembler listings from [34].

76 April 9, 2020

opcode), because the program memory grows faster than the register fle. Using

early 2020 pricing, giving programs up 512 × 512 registers instead of fxed at 512

increases cost of manufacture by about $50 per million words of program memory.

But there is no speed penalty, except for initial register allocation.

There are a few dual-port RAMs on the market which could allow simultaneous

retrieval of the left and right operands, but they aren’t fungible and their prices

refect their seeming indispensability. They also paint a target on our system in terms

of supply chain attacks: buyers of ordinary SRAM might be doing mundane things,

but buyers of dual-port SRAM are building networking equipment, CPUs, or

something else of interest to adversaries. While I’m out of my area of knowledge, I

conjecture that the greater complexity of dual-port RAM might makes it harder to

inspect by microscopy, emissions analysis, or fuzzing for irregularities.

Rather than use dual-port RAM, I would build two register fles that use the

same address lines, and name them “left” and “right” after the operands they supply.

ALU results would be written to both copies, perhaps facilitated by the otherwise-

unused extra byte outputs of the γ RAMs.

Duplicate register fles are particularly helpful if the system includes a

hardware multiplier along the lines of Section 2.9. Most likely, the multiplier would

be connected in parallel with the ALU, with the tristate outputs and possibly clock

inputs of the two subsystems coordinating which one is active. The multiplier will

produce a two-word result that needs stored simultaneously, or there will be

penalties in complexity and performance. With two register fles, the left and right

registers can receive the high and low order words. But this means multiplication

instructions will break an invariant that would otherwise hold: the result of a

multiplication appears to change depending on whether it is the left or right operand

of a subsequent instruction, and programs must account for this.

Assume for simplicity of illustration that A × B is less than 235. The left copy of

the register the product is written to is zero, and the right copy contains the full

product. Now suppose the expression we want to compute is A × B − C. If we try this

using a subtract instruction, the result is − C, because the ALU is given zero when it

77 April 9, 2020

loads A × B as the left operand. Instead, we need a reverse subtract instruction that

computes − C + A × B, which will load the low word of the product as the right

argument of the subtraction. This is why reverse subtraction appears throughout

Sections 4.2, 4.10, and 4.11, as well as Tables 6, 14, and 15. Product subtraction is

often needed by programs, particularly in vector processing where speed matters.

But we don’t go so far as to ofer reversed-argument versions of any opcodes other

than subtraction: the architecture doesn’t support it, and the ALU memory isn’t

available. We can always resynchronize unbalanced registers in one cycle by adding

zero, the XL or XR opcode (Table 7), or innumerable other constructions. Subtraction

is treated as a special case.20

This CPU doesn’t ofer many modes for addressing data memory, but the ALU

can be tasked for address computation during load and store instructions. The

virtual address can be any ALU function the control unit knows how to dispatch.

When the CPU stores to memory, the last nine bits of the instruction word specify

the source register instead of the usual destination register. The address functions

would include at least A(dd), S(ubtract), and NUDGE, and possibly many more

depending how many opcodes are available to assign. These operations would each

have load and store variants. Opcodes to write to program memory don’t have to be

as numerous or diverse, as they are only used when programs are loaded.

Here is a simplifed order for instruction execution:

1. fetch instruction from program memory

2. decode instruction

3. fetch left and right operands from register fle

4. ALU α

5. ALU β and θ (simultaneous)

6. ALU γ

7. map logical to physical page (memory operations only)

8. write result to register or memory-register transfer

20 To improve binary compatibility across a variety of similar CPUs, reverse subtraction should exist for
all CPUs, including ones that don’t support hardware multiplication.

78 April 9, 2020

Each of the steps uses one SRAM time slot, so we begin to see the parameters

that afect how fast the CPU will run and what circuits need to be included. I have not

tried to optimize anything here, although there are opportunities. A critical

contingency is that if we try to somehow pipeline the CPU, steps 8 and 3 present a

hazard to overcome. The simplest mechanism is to always wait until an instruction’s

result has been written to the register fle before fetching the next instruction’s

operands. This won’t catastrophically reduce the clock speed, but it would be the

long pole in the tent. Possible speedups include:

• Relocate instruction fetch and decode to the cycle preceding execution.

This can happen in combination with other remedies.

• Never allow one program to run during consecutive cycles. This method

is already popular and is the reason many CPU cores claim to run two

threads at a time. What’s actually happening is that these cores can’t

keep up with their own operation, so they alternate between running two

programs at half speed while calling this oddity a beneft.

• Eliminate one time slot by computing addresses with a 2-layer carry-skip

adder instead of with the ALU. This adds 5 SRAMs for data memories of

up to 16 Mi words, otherwise 7 SRAMs.

• Require addresses to be fully computed prior to loads and stores. This

lets page translation to happen during the ALU’s time allocation and

requires no additional RAMs, but adds another instruction to most store

and load operations. It’s unclear whether a net performance gain or net

loss would result.

• Alter cycle timings based on the type of instruction executed.

• Provide direct operand forwarding from γ to α, possibly only supporting

the left operand. One or more of the layers may require clocking. The

redundant output bytes from γ may provide helpful isolation. Forwarding

must take care to accommodate multitasking, and vice versa.

Of these speedups, I would begin with the frst listed—instruction fetch and

79 April 9, 2020

decode one cycle ahead—and perhaps go no further, on the condition that any

additional clocking or circuits the solution adds won’t negate the advantage derived.

A problem to work around is that as a branch is being decided, the next instruction is

already being fetched into the pipeline. If fetches happen late in cycles and branch

decisions happen early, perhaps unwanted fetches can be prevented in advance. A

second option is to pass a CPU fag (that must be retained across context switches)

that prevents the next instruction from writing results anywhere. A third option, my

favorite actually, is to embrace the hazard and tell the programmer that all

instructions that immediately follow branches will be unconditionally executed. In

many cases it wouldn’t matter: a register would be loaded with a value that is never

used. In scenarios where something might go wrong, the programmer, assembler, or

compiler can place no-operation instructions after questionable branches. In some

situations, instructions can be reordered to take advantage of this behavior by

getting an early start on the code being branched to.

The second speedup—so-called hardware multithreading—isn’t a speedup in

the conventional sense, but it does allow maximal use of the CPU on the condition

that at least two programs are in a runnable state. It would be straightforward and

not much hardware added to have a small table of 7-bit users and cycle through

them between instructions. The kernel could manipulate the table for a great variety

of CPU time allocations. But there is one catch: if there will normally only be one

program that needs to run, this “enhancement” will slow the processor down, not

speed it up.

The CPU will require opcodes and hardware for loading immediate values into

registers. Data for these values presumably replaces the left and right operand

register numbers in the instruction word. Immediates can’t be loaded from data

memory, because the addresses the immediates are loaded from are immediate

values themselves.

One security consideration, which extends beyond the CPU, is that the

operating system must control all bus activity. Just because a device is physically

attached or soldered to the system board does not assure that device is benign.

80 April 9, 2020

Direct access between devices and data memory is fast, simple, convenient, elegant,

and prone for exploitation. Without a secure bus, there is no secure machine.

All peripherals call for careful vetting, but mass storage devices are especially

concerning due to their centralized access to information and the eventuality that

we’ll still buy them from a small number of factories. Here is a principal need for the

mixing opcodes of Section 4.9. I suggest using a pseudorandom variable to split local

storage across two SSDs, so that neither storage device has the information,

connectivity, or processing power to infer or divulge anything about their contents. A

CPU-devouring pseudorandom function is probably not necessary, as the only

computing hardware available to an adversary would be the isolated controllers for

the two SSDs. Retrieving the information need not involve a key: the information can

be split such that an XOR across the two volumes will recover everything. Note that

this control measure has nothing to do with encrypting or authenticating data at

rest, but serves only to blind the storage controllers to the data they handle.

5.2 Mixed signedness and practical overrange checks

Most CPUs with a word size of n bits do arithmetic modulo 2n, and until

recently it hasn’t been in fashion to pay attention to the possibility of wraparound.

Now that there is wider realization of vulnerabilities that stem from discontinuities in

arithmetic, unhealthy workaround have appeared. For instance in the C language,

code that historically read

c = a + b;

now has to read

if (b > 0 && a > (INT_MAX - b)
 || b < 0 && a < (INT_MIN - b))
 longjmp(CATCHIT, SIGNED_ADD_OVERFLOW);
else
 c = a + b;

to comply with CERT rules for “secure coding” [23]. This isn’t secure coding. This

81 April 9, 2020

is untenable. This scheme not only destroys the C language, but also cripples the

CPU in more ways than we have space to consider.

This really isn’t an SRAM ALU issue, but a prehistoric gene that has been

passed down too many generations of silicon. But as we are here, there is a moral

imperative to do rightly. The correct paradigm is

c = a + b;
... /* all the calculations that need done*/

if (something_bad_ever_happened())
 deal_with_it_here();

Places where a program needs to know whether it’s still on or of its rocker are

called observation points in some literature [24]. This reference places responsibility

for range checking on compilers—clearing the source code of vulgar gymnastics, but

profoundly disrespecting the machine code and CPU. There is a better way.

Knowledge of whether or not an addition or any other arithmetic operation

has a result that fts within its destination is as critical to correctness as knowledge of

the result itself. Our ALU of Part 4 ensures that along with operands for arithmetic

tasks, the semantics—particularly the signed or unsigned intention—for each

operand is supplied. This ALU goes still further, by indicating for both result

interpretations whether the 36-bit output is valid for the operands supplied. The

programmer, compiler, assembler, or interpreter is freed from reasoning as to

whether overfow might be possible for every smackerel of arithmetic. Not only is

this important on account of human engineering considerations, but also because

the possibility of wraparound is undecidable according to Rice’s theorem [25].

When unexpected wraparound occurs, it is not necessary to drop everything.

Calculations can continue, with the stipulation that the results at the end will be

incorrect. Once the calculations come to the end, we can then ask the CPU if there

might be something wrong the results, and deal with that possibility after any deep

call stacks or nested conditionals have been unwound. But the CPU must not have

forgotten, as most today do, that a result did not ft. This is why our CPU is proposed

82 April 9, 2020

with an Range fag and a Temporal fag. The T fag changes from instruction to

instruction; it indicates that the most recent arithmetic result did not ft in its

destination. Setting T also sets R, but resetting T does not modify R, which is only

cleared by an express fag manipulation. Most software needn’t check T ever. T is for

code that operates on integers larger than a word and other legitimate but

infrequent wraparound scenarios.

Arithmetic semantics can cause errors needlessly, as in cases where there is no

result word, but fags aren’t set as intended. Our ALU design is careful about such

things as comparing signed numbers with unsigned numbers: we make this legal and

guarantee correct results for all inputs and input semantics. So we can compare 235 ( 

0x800000000 ) with –235 (also 0x800000000  ), and the ALU knows these are unequal

and that –235 is lesser. It can also negate the pole: –(–235) will succeed when written to

an unsigned register, but will warn using the T and R fags when written to a signed

register.

There is no revolutionary technology here, and it doesn’t matter whether we

are early or late in the line to propose a solution. I believe that all network-connected

ALUs need to handle arithmetic semantics correctly, as our ALU endeavors to do.

5.3 Security

The CPUs the proposed research leads toward signifcantly contract surfaces

for attack. Here are a few highlights. First, the suggested designs have no

components that ought to be capable of persisting any state. It’s technologically

possible to embed sinister microcontrollers in fake RAM, but such devices would

have to be sold at scale via the right channels to the right victims and soldered into

the right locations on the right devices. These counterfeits would need to match or

beat prevailing industry prices, still contain the advertised RAM, and evade detection

when random samples are inspected electronically or microscopically. This scenario

is biased strongly in the defender’s favor.

No ALU component ever sees more than six bits of any operand; however, the

83 April 9, 2020

register fle might see 18 consecutive or even all 36 bits of every register, unless the

registers are striped. The data memory and peripherals are even larger targets. In

the CPU itself, there are three places for attackers to fnd cover: compromising

multiple components (difcult to coordinate), altering the circuit board (difcult to

conceal), or altering software to feed leaked information a few bits at a time through

a malicious component (difcult to evade audits). It should be noted that physical

alteration of computing machinery for the purpose of compromise is a mature

career feld [26], as is diversion of new victim systems from distribution facilities [27].

CPUs derived from the ALUs of this research are immune to all attacks that

exploit the temporality of dynamic RAM, as no DRAM is present, and all attacks on

cache timing, as no cache exists.

The CPUs we advance are also immune to malicious insertion of code segment

or stack contents via malformed input. They protect the contents of their instruction

pointers to an extent not found in traditional computing machinery.

The emergent CPUs ofer exceptional protection against attempts to exploit

numeric overfow, provided that software performs a trivial and unintrusive check.

They are simultaneously resilient with respect to signedness semantics.

The CPUs that our ALUs will enable can have dazzlingly simple memory

protection and multitasking mechanisms. Likewise with privilege restrictions, which

do not require any additional hardware. By fltering privileged opcodes at load time,

the kernel can ensure that none exist in memory for nonprivileged programs to

execute in the frst place. Branches and calls to privileged code are also fltered by

the loader.

The proposed ALUs are not ideal in their cryptographic prowess, but they are

not too bad. At the very least, they minimize their own prospects for building in

cryptographic backdoors. They also excel at applying their full computational

capacity for encryption and decryption, albeit not with ciphers that have been

standardized yet.

The CPUs we are enabling can be specifed, adapted, built, repaired, and used

without restriction by their owners, not by outsiders who don’t have skin in the

84 April 9, 2020

game. Except for within a very small selection of interchangeable commodity chips,

there will be no unknown, unreadable, unauditable, or unserviceable microcode,

frmware, or circuitry. They will be inspectable after manufacture. They will not

support so-called digital rights management, serial numbers, or other anti-consumer

measures. They are incapable of becoming “bricked.” They will allow unrestricted

reverse engineering, academic study, security research, documentation, replication,

and most importantly, ofine and networked use.

5.4 Anticipated performance

For an apparatus that is assembled by soldering, Part 4’s ALU is very fast.

Except for the task of obtaining the CPU’s zero fag, where we’re aforded a little

more time, there are exactly three gate delays. The “gate” in this instance is a small

asynchronous static RAM, and delay per gate for low-cost devices is 10 ns. Parts for

one ALU cost about $40 as of early 2020. Using the fastest chips available raises cost

for parts to $100 and reduces access time to 7 ns per gate. The remainder of this

section will assume that the cheaper, more broadly available 10 ns parts are opted.

The CPU cycle steps listed at page 78 ofer hope that a CPU can reach 10 MIPS

without heroic measures. Our bare ALU, when allowed a full 10 ns for capacitance

and board trace setbacks, tops out around 25 MIPS, but no thought has been given

to inputs or outputs we might wish to clock. These fgures sound lackluster

compared an iPad, but neither architecture is trying to be the other. As I pause to

refect that we can build a 10 MIPS CPU in our kitchen using fungible components

while under a stay-at-home order, I discover we aren’t as powerless as once thought

with respect to our silicon.

We can’t make apples-to-apples comparisons of CPUs or architectures. Instead,

we need to consider suitability for the particular uses we intend. Intel’s 80486 was all

the rage when I was an undergraduate—correction, many of us found no need to

upgrade our 286s (that’s not a typo) until well after I graduated. A 10 MIPS machine

based on our ALU can do short multiplication as fast as a 40 MHz 80486, and our

85 April 9, 2020

ALU doesn’t even have a multiplier! And our word size is a tad larger.

There are a couple more comparisons we can draw between the capabilities of

our ALU and the 80486. The 486 was the frst CPU in the x86 line that could add

integers in one clock cycle. Our ALU also adds in one cycle. We also shift or rotate

any number of bit positions in one cycle. The 486 required two; it would be the

Pentium that introduced one-cycle shifts to Intel’s lineup. Our ALU doesn’t include

foating point operations, yet might not fall much behind the 486’s numeric speed for

single-precision tasks. But this is only because Intel’s CPU did not ofer single-

precision instructions. The 80486 also wins in another respect: its clock rate would

eventually reach 100 MHz. The architecture of this proposal might never see even

half of that speed. Speed is one of the things VLSI does best.

One other performance characteristic: what is the physical size of this ALU?

Plate 20 shows an actual-size mockup using the smallest readily-available

components, although these are not the easiest packages to position and solder by

hand. The dark rectangles are the SRAMs, and the light squares are analog switches

used to initialize the RAMs during startup. An ATM card silhouette is visible behind

the components for comparison.

5.5 Suitable uses and limitations

I can testify that It’s practical to write hundred-page documents on 286-class

desktop computers, write and build software, use spreadsheets, and send and read

email. For all of these, there are eventually limits. But the proposed ALU is a much

stronger design than the 80286: the word is 20 bits wider, the memory model is fat,

there are no wait states, preemptive multitasking and memory protection are

specifed, and fewer cycles are needed for just about everything. So our ALU can be

used for practical text-oriented desktop work and basic correspondence.

This ALU is fast enough to control most systems that physically move:

industrial and commercial devices, factory automation, electric grid switching, wells

and pumps, heavy machinery, trains, dams, trafc control, chemical plants, engines,

86 April 9, 2020

and turbines. Its suitability for use in life support equipment, broadly construed to

not just mean medical equipment but also aircraft, space travel, defense systems,

and other uses where failure assures death is less certain. It can probably be

certifed for use, but efective controls against bit upset from radiation, electrical

noise, mechanical strain, temperature, moisture, power supplies, and damage must

be engineered.

Our ALU is also fast enough for some uses not involving motion, such as

peripheral and device controllers, telephony, even Ethernet switches to medium

speeds. A key reason Ethernet can work is that routing and frewall decisions derive

from packet headers, not their payloads. TCP over IPv6 at 100 Mbit/s is only 8333

packets per second at 1500 bytes each. We can keep up if fltering and NAT rules

aren’t too complex. But when there is no payload, which mercifully isn’t very useful,

there could be 208000 packets per second, each containing a 15-word header.

Hardware that can sustain this faster rate would be more involved, but probably can

be built.

It might sound archaic to consider building 100 Mbit switches, but the reality

switch manufacturers have given us is dystopian. A leading U.S. producer admitted

six times in 2018 alone to building secret backdoor passwords into its networking

and network management products. Unfortunately, these are not isolated cases, and

confdence in scores of once-respected brands has been extinguished. Open-

architecture, transparent network hardware can help us rebuild, even if switching

speeds will be modest as a consequence. My lab, with less than 20 Mbps download

and less than 1 Mbps upload to the outside world, has used an improvised medium-

speed device as its frewall for two years.

There are applications our ALU can’t accommodate without either specialized

designs and heavy parallelization or ofoading to other kinds of processors. These

include image and video processing, supervised and unsupervised learning, self-

driving vehicles, fast rasterized or vector graphics, common symmetric ciphers at

high speeds, frequent asymmetric cryptography, Bitcoin mining, large database with

fast response times, ambitious parsing, fast page layout, and unmanned aerial

87 April 9, 2020

vehicles with stringent weight budgets. In lay terms, we can’t surf the Web like we do

today. Digital signal processing, like Ethernet switching, falls in the middle. Some

audio tasks, even some software-defned radio tasks at low intermediate

frequencies, should be no problem. But fast radar front ends will have to use a

diferent ALU.

5.6 Social and psychological benefit

As I write in April 2020, much of the world isn’t thinking deeply about

surveillance or censorship; instead, humans are connecting online as never before.

But these conversations force a choice between two perils: either people will say too

much, or they will say too little.

On June 7, 2013 Barack Obama told the country ”When it comes to telephone

calls, nobody is listening to your telephone calls“ [28]. Of course nobody is listening.

There aren’t enough personnel. But most governments have the network capacity,

CPUs, electricity, storage, and perceived authority to record all calls and transcribe

them to text, just in case. To what extent they do or do not is uncertain, varies with

jurisdiction, and is subject to change.

Who will tell their mothers the truth on the telephone, let alone write to them

online? Today’s close relationships are accustomed to instantaneous connection, but

most are not local. Responses vary from individual to individual. Many, feeling they

have nothing to hide, try not to be inhibited by risk of interception. Many others are

more guarded about telecommunication. A third set cite an ethical obligation to

supervise the use of government’s power and to curb that power where necessary,

whether or not they would otherwise have nothing to hide.

I would personally breathe more easily if at least one of my computers was

both usable and inspectable. My TRS-80 collection is the latter, but these were only

designed as executive toys. The text editor inserts characters by moving everything

that follows over by one byte. That doesn’t scale. As for my usable computers, a

majority of contemporary attacks owe their viability and continuity to the non-

88 April 9, 2020

inspectablity of the equipment. It’s not enough to run software that is free of defects.

Without secure hardware, there is no secure software.

The 1992 riots in Los Angeles left the county I lived in unexpectedly short of

fuel and cash, with no more of either being delivered. Today, millions face not only

new concerns about availability of lifesaving machinery, but also life savings, not to

mention small- and large-scale commodities like elastic for sewing and tissue for

baths. To frst order, there is no computing hardware that works transparently

enough to be counted on when we go online. This would be a terrible position to

start from when a diferent catastrophe forces the entire world to seek shelter

ofine.

5.7 Originality of research and contributions made

The computer science and computer engineering literature is vast, and

technology that can index by concepts within article text generally does not exist.

Moreover, paywalls of various faces, whether requests for money in exchange for

access or distribution solely on paper, block most of the indexing that could be done.

This limits what claims I can make. Where I can prove I was not the frst to discover

something, I can say that confdently. Otherwise, the most I can say is that I believe I

found something independently, and that I made reasonable eforts where

appropriate to search for prior work. There is some fairness, however, in the

knowledge that for anything frst discovered by me, failures of our search tools could

ultimately credit another researcher for its discovery.

I owe a shout-out to the dozens of hobbyists, students, and instructors who

have built and documented their own CPUs. A partial list is online at [29], and all

make interesting and worthwhile reading. Of these, [30] is noteworthy for running an

actual operating system and occasionally facilitating remote use by visitors. This

“glue logic” system, although operating below 1 MIPS, encouraged me to move away

from using separately-packaged transistors to build CPUs.

Another noteworthy CPU is Olivier Bailleux’s Gray-1 [31], unique because of its

89 April 9, 2020

nearly-all-memory implementation. Even the registers of this 8-bit CPU are made

from EPROM. The ALU’s operations are add, subtract, shift one position left or right,

and NAND. The EPROM tally is 164 Mibit, and the CPU can execute 30000

instructions per second [32]. Notwithstanding its modesty, the Gray-1 is our work’s

nearest known predecessor.

Where I mention SRAM in the following claims, it is meant to encompass

anything that could work as SRAM works, whether ROM, EPROM, any kind of table

lookup mechanism, PLD, FPGA, fash memory, print in books, whatever.

With respect to SRAM ALUs in particular, I have found no literature suggesting

their use to implement carry-skip adders, whether these are 2-layer, 3-layer, or

hybrids of both that can add words of a few hundred bits within three gate delays.

Carry-skip adders are standard, of course, but their SRAM versions are novel and, as

discussed in Section 2.4, exhibit distinct behaviors.

The generalization of the propagate and carry bits to handle non-additive

functions, surely someone must have thought about, and probably with no

consideration given to SRAM. But what this concept might even be called eludes me,

and the branch of mathematics it’s in might not be one I’ve heard of. With this said, I

have shown the usefulness of overloading the propagate and carry bits from the

stages of an adder to do many other useful operations, as Section 4.14 shows.

Fast SRAM multipliers as illustrated in Section 2.9, as well as the arbitrary

geometry adders of Section 2.3 that they depend on, aren’t in the literature as such.

But the contribution by me is, as with my other contributions, incremental at most.

Wallace [17], Dadda [18], and others reasoned about how partial products could

added efciently years before even I was born, and I defnitely read up on their work

in the process of doing mine. That my multipliers reduce the subproducts in fewer

steps than Dadda’s or Wallace’s, I can’t take credit for. Instead, it’s SRAM’s

expressivity in operation. Moreover, the established VLSI multipliers do work faster

and use fewer transistors than we can. But our multipliers are auditable, and we can

manufacture them ourselves.

The short and long in-software multiplication schemes of Section 4.6, I have

90 April 9, 2020

not encountered elsewhere for SRAM, but table-driven multiplication schemes were

around before dirt was new. Some ingenious speedups have found use over the

years when circumstances permitted, such as the method of quarter-squares for

small factors [33]. Unfortunately, what it would take to implement a practical

quarter-square-like method for SRAM does not buy us much speed. Building half-

word multipliers and using them four times doesn’t fare any better. My experience

with SRAM ALU research is that without special hardware, multiplication is slow. With

hardware added, the system costs more. In-between approaches have the

drawbacks of both, and the benefts of neither. But there is a signifcant

accomplishment in our work for software multiplication schemes: even without a

hardware multiplier as such, the α layer tables out-race the 80486 for short

multiplication, and they aren’t much slower than the 486 for long multiplication.

Logarithmic shifters are standard in VLSI, but I don’t believe that they appear in

the literature for SRAM. Moreover, VLSI shifters are more “purely” logarithmic in that

they shift in large amounts, then in small amounts, or vice versa. SRAM logarithmic

shifters don’t really shift anything: they swizzle and then permute, or permute and

then swizzle. They are a creature of SRAM’s limitations and power. I went through

several iterations of shifter designs before an elegant one manifested.

Using SRAM to multiplex or swizzle is an abuse of silicon machinery, just like

everything else in this proposal. I’ve not found this technique suggested by anyone—

too many transistors, and way slower than called for. Except that human

misbehavior has poisoned the more rational methods with prospects of deceit. Thus

our SRAM approach to swizzling turns out to be useful, independently discovered,

and potentially novel.

ALUs comprised of superposed carry-skip adders and logarithmic shifters are, I

am confdent, original to this work. I have found neither of the two essential SRAM

components mentioned anywhere. Here again, I arrived in small steps. By 2016, I

had been thinking about end-user-built CPUs seriously enough to make some notes

and drawings, but my expectation was that I would use discrete transistors and

connect them using a pick-and-place machine and refow oven. This expectation

91 April 9, 2020

persisted into early 2019, when relaxing my criteria somewhat, I started designing a

CPU around surface-mounted “glue logic” chips. Before long it became evident that

the famed components of the 1970s are either no longer made or not updated to

contemporary speeds. An SRAM carry-skip adder followed from necessity, but

multiplexers were still to be used for shifting. But then there were no decent

multiplexers, so RAMs with extra input bits next to the subwords were used to nudge

a position or so in either direction. This design was known to waste much RAM and

could not shift in constant time. Eventually I fgured the logarithmic shifter out, and

drew it into a 32-bit ALU with a 2-layer adder that wasn’t superposed with the shifter.

It was a very good ALU, and I worked out a lot of specifcs. That ALU called for 80

Mibit of SRAM. But then in January 2020, a night of poor rest and relentless ideas

gave me the 3-layer ALU with adder and shifter superposed as shown in Plate 17. Its

design was more symmetric and only required 21 Mibit of RAM components, within

which 10.5 Mibit might not be used. The semi-swizzler of Section 2.7 and 2-layer

ALUs of Part 3 were not realized by me until March 2020.

S-box substitutions as our ALU does in α and γ are generally by table and

routinely implemented in RAM. What I do not know is what ciphers might exist, if

there are any, that do their permutation steps using S boxes, as we do in layer β.

More commonly, mixing between subwords is done using wires or by another

transformation that is faster than S-boxes.

I have never seen the NUDGE pointer operation before; I designed it to

address my own observations of the inefciencies of pointers within structures. I am

aware of no CPU with an operation of this type.

I do not know of CPUs that handle arithmetic semantics correctly in light of

contemporary needs. I would expect research literature to shine some light here, but

no urgency to be felt by manufacturers or software developers to depart from

decades of sunk costs and vendor lock-in. There was little motivation to search for

papers about arithmetic overfow: I was decided already as to what I would do, and

whatever useful material may have been published by others at the hardware level,

no one seems to be heeding it.

92 April 9, 2020

I have several features planned for the self-hosted assembler that might be

unusual or novel, but they are applicable to assemblers in general as opposed to

specifcally for SRAM ALUs. These features, therefore, are only relevant to this

proposal to the extent that our assembler implements them. Considering that the

assembler has not been written as of this date, it is not yet time to enumerate these

features or estimate their novelty.

93 April 9, 2020

6. REFERENCES

1. Jo Van Bulck et al. 2020. LVI: Hijacking transient execution through

microarchitectural load value injection. 41st IEEE Symposium on Security and

Privacy (S&P 20), (pandemic all-digital conference).

2. Mark Ermolov. 2020. Intel x86 root of trust: loss of trust. (March 2020).

Retrieved April 4, 2020 from

https://blog.ptsecurity.com/2020/03/intelx86-root-of-trust-loss-of-trust.html

3. Paul Kocher et al. 2019. Spectre attacks: Exploiting speculative execution. In

40th IEEE Symposium on Security and Privacy, (San Francisco, CA), IEEE, 1–19.

4. Moritz Lipp et al. 2018. Meltdown: Reading Kernel Memory from User Space. In

Proceedings of the 27th USENIX Security Symposium, (Baltimore, MD), USENIX

Association, 973–990.

5. Christopher Domas. 2018. Hardware Backdoors in x86 CPUs. At Black Hat USA

2018, (Las Vegas, NV), white paper.

6. CTS Labs. 2018. Severe Security Advisory on AMD Processors. CTS Labs, Tel

Aviv, Israel.

7. Mark Ermolov and Maxim Goryachy. 2017. How to hack a turned-of computer,

or running unsigned code in Intel Management Engine. At Black Hat Europe

2017, (London, UK), slides.

8. Erica Portnoy and Peter Eckersley. 2017. Intel’s Management Engine is a

security hazard, and users need a way to disable it. (May 2017). Retrieved April

4, 2020 from https://www.ef.org/deeplinks/2017/05/intels-management-

engine-security-hazard-and-users-need-way-disable-it/.

9. Joanna Rutkowska. 2015. Intel x86 considered harmful. (October 2015).

Retrieved April 4, 2020 from

https://blog.invisiblethings.org/papers/2015/ x86_harmful.pdf

10. Georg T. Becker et al. 2013. Stealthy Dopant-Level Hardware Trojans. In

Cryptographic Hardware and Embedded Systems – CHES 2013 , (Santa Barbara,

CA), Springer, 197–214.

94 April 9, 2020

https://blog.ptsecurity.com/2020/03/intelx86-root-of-trust-loss-of-trust.html
https://blog.invisiblethings.org/papers/2015/x86_harmful.pdf
https://www.eff.org/deeplinks/2017/05/intels-management-engine-security-hazard-and-users-need-way-disable-it/
https://www.eff.org/deeplinks/2017/05/intels-management-engine-security-hazard-and-users-need-way-disable-it/

11. Sergey Bratus et al. 2012. Perimeter-crossing buses: A new attack surface for

embedded systems. In Proceedings of the 7th Workshop on Embedded Systems

Security (WESS 2012), (Tampere, Finland).

12. Pavel Dovgalyuk. 2019. Relay computer computes 7 digits of pi. Video retrieved

April 4, 2020 from https://www.youtube.com/watch?v=bOOCfx2EN10

13. Mischa Schwartz and Jeremiah Hayes. A history of transatlantic cables. IEEE

Communications Magazine, 46, 9, (Sep. 12, 2008), 42–48. DOI:

https://doi.org/10.1109/MCOM.2008.4623705

14. Jin-Woo Han et al. 2019. Nanoscale vacuum channel transistors fabricated on

silicon carbide wafers. Nature Electronics, 2, (Aug. 26, 2019), 405–411. DOI:

https://doi.org/10.1038/s41928-019-0289-z

15. The MOnSter 6502. Retrieved from https://monster6502.com/.

16. Onur Mutlu and Jeremie S. Kim. 2019. RowHammer: A retrospective. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems.

DOI: https://doi.org/10.1109/TCAD.2019.2915318

17. Christopher Stewart Wallace. 1964. A suggestion for a fast multiplier. IEEE

Transactions on Electronic Computers, 1, (Feb. 1964), 14–17.

18. Luigi Dadda. 1965. Some schemes for parallel multipliers. Alta Frequenza, 34, 5,

(May 1965), 349–356.

19. Robert G. Brown et al. 2020. Dieharder: A random number test suite. Retrieved

from https://webhome.phy.duke.edu/~rgb/General/dieharder.php

20. Karthikeyan Bhargavan and Gaëtan Leurent. 2016. On the practical (in-)security

of 64-bit block ciphers: Collision attacks on HTTP over TLS and OpenVPN. In

Proceedings of the 2016 ACM SIGSAC Conference on Computer and

Communications Security (CCS ’16). Association for Computing Machinery, New

eork, Ne, 456–467. DOI: https://doi.org/10.1145/2976749.2978423

21. Tetsu Iwata. 2006. New blockcipher modes of operation with beyond the

birthday bound security. Retrieved April 4, 2020 from https://www.nuee.

nagoya-u.ac.jp/labs/tiwata/cenc/docs/cenc-fse2006full.pdf

22. Andrei Tatar et al. 2018. Throwhammer: Rowhammer attacks over the network

95 April 9, 2020

https://www.nuee.nagoya-u.ac.jp/labs/tiwata/cenc/docs/cenc-fse2006full.pdf
https://www.nuee.nagoya-u.ac.jp/labs/tiwata/cenc/docs/cenc-fse2006full.pdf
https://doi.org/10.1145/2976749.2978423
https://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://doi.org/10.1109/TCAD.2019.2915318
https://monster6502.com/
https://doi.org/10.1038/s41928-019-0289-z
https://doi.org/10.1109/MCOM.2008.4623705
https://www.youtube.com/watch?v=bOOCfx2EN10

and defenses. In 2018 USENIX Annual Technical Conference, (Boston, MA),

USENIX Association, 213–225.

23. Robert C. Seacord. 2014. The CERT C Coding Standard: 98 Rules for Developing

Safe, Reliable, and Secure Systems (2nd. ed.). Addison-Wesley, New eork, Ne,

112–118, 126–135.

24. David Keaton et al. 2009. As-if Infnitely Ranged Integer Model (2nd. ed.).

Technical Note CMU/SEI-2010-TN-008. Carnegie Mellon University Software

Engineering Institute, Pittsburgh, PA.

25. Henry Gordon Rice. 1953. Classes of recursively enumerable sets and their

decision problems. Transactions of the American Mathematical Society 74, 2

(March 1953), 358–366. DOI: https://doi.org/10.1090/s0002-9947-1953-

0053041-6

26. National Security Agency Advanced Network Technology Division. 2008. NSA

ANT catalog. Retrieved April 4, 2020 from https://www.ef.org/fles/2014/01/06/

20131230-appelbaum-nsa_ant_catalog.pdf

27. Jacob Appelbaum et al. 2013. Documents reveal top NSA hacking unit. Spiegel,

Dec. 29, 2013. Retrieved April 4, 2020 from https://www.spiegel.de/

international/world/the-nsa-uses-powerful-toolbox-in-efort-to-spy-on-global-

networks-a-940969.html

28. Barack Obama. 2013. Statement by the President. June 7, 2013, (San Jose, CA),

transcript. Retrieved April 4, 2020 from https://obamawhitehouse.archives.gov/

the-press-ofce/2013/06/07/statement-president

29. Warren Toomey (Ed.). Homebrew computers web-ring. Retrieved from

https://www.homebrewcpuring.org/.

30. Bill Buzbee. 2010. Magic-1 is a completely homebuilt minicomputer. Retrieved

from http://www.homebrewcpu.com/.

31. Olivier Bailleux. 2016. The Gray-1, a homebrew CPU exclusively composed of

memory. Retrieved April 4, 2020 from

https://bailleux.net/pub/ob-project-gray1.pdf

32. Olivier Bailleux. 2016. A CPU made of ROMs. Watched April 4, 2020 from

96 April 9, 2020

https://bailleux.net/pub/ob-project-gray1.pdf
http://www.homebrewcpu.com/
https://www.homebrewcpuring.org/
https://obamawhitehouse.archives.gov/the-press-office/2013/06/07/statement-president
https://obamawhitehouse.archives.gov/the-press-office/2013/06/07/statement-president
https://www.spiegel.de/international/world/the-nsa-uses-powerful-toolbox-in-effort-to-spy-on-global-networks-a-940969.html
https://www.spiegel.de/international/world/the-nsa-uses-powerful-toolbox-in-effort-to-spy-on-global-networks-a-940969.html
https://www.spiegel.de/international/world/the-nsa-uses-powerful-toolbox-in-effort-to-spy-on-global-networks-a-940969.html
https://www.eff.org/files/2014/01/06/20131230-appelbaum-nsa_ant_catalog.pdf
https://www.eff.org/files/2014/01/06/20131230-appelbaum-nsa_ant_catalog.pdf
https://doi.org/10.1090/s0002-9947-1953-0053041-6
https://doi.org/10.1090/s0002-9947-1953-0053041-6
https://doi.org/10.1090/s0002-9947-1953-0053041-6

https://www.youtube.com/watch?v=J-pyCxMg-xg

33. James Whitbread Lee Glaisher. 1889. The method of quarter-squares. Nature

40 (Oct. 10, 1889), 573–576. DOI: https://doi.org/10.1038/040573c0

34. Texas Instruments Inc. 1975. TMS 1000 Series MOS/LSI One-Chip

Microcomputers Programmer’s Reference Manual. Texas Instruments Inc.,

Dallas, TX.

Colors in this proposal are Wright State University branding, with additional

colors from https://colorbrewer2.org by Cynthia A. Brewer, Geography, Pennsylvania

State University.

97 April 9, 2020

https://colorbrewer2.org/
https://doi.org/10.1038/040573c0
https://www.youtube.com/watch?v=J-pyCxMg-xg

98 April 9, 2020

sel result

00 L NAND R
01 L XOR R
10 L + R with carry
11 L − R with borrow

Plate 1. Simple lookup element

L Rsel

result

7 72

8

64k x 8
SRAM

101
0100
001 01001
110 110 00

+ 101 + 0 01010
011010 010001110

Plate 2. Arbitrary geometry addition

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 C
1 0 0 0 0 0 0 C 1

2 0 0 0 0 0 C 1 1

3 0 0 0 0 C 1 1 1

4 0 0 0 C 1 1 1 1

5 0 0 C 1 1 1 1 1

6 0 C 1 1 1 1 1 1

7 C 1 1 1 1 1 1 1

Plate 3. Subword carry decisions for 3-bit addition

99 April 9, 2020

Plate 4. 2-layer carry-skip adder

L3 R3

3

p c sp c sp c ss

3 33

L2 R2 L1 R1 L0 R0

Y3 Y2 Y1 Y0

3 3

3333

3 3 3 3 3 3

old carry

new carry

add carryadd carry add carry add carry

3-bit add3-bit add 3-bit add 3-bit add

Plate 5. 2-layer carry-skip adder: old carry via top

L3 R3

c sp c sp c ss

3 33

L2 R2 L1 R1 L0 R0

Y3 Y2 Y1 Y0

3 3

3333

3 3 3 3 3 3

old carry

new carry

add carry add carry add carry

3-bit add3-bit add 3-bit add 3-bit add

100 April 9, 2020

Plate 6. 2-layer carry-skip adder: bidirectional

3

p c sp c sss

3 33

L3 R3

3 3

Y0

3

Y1

3

Y2

3

Y3

3

L2 R2

3 3

L1 L0

3 3

R1 R0

3 3

old carry

new carry

add carryadd carry add carry add carry

3-bit add3-bit add 3-bit add 3-bit add

p c

new carry

p c

101 April 9, 2020

102 April 9, 2020

103 April 9, 2020

in out in out

0 2 8 a
1 e 9 f
2 b a 7
3 c b 4
4 9 c 6
5 1 d 0
6 8 e d
7 3 f 5

Plate 11. 4-bit S-box

104 April 9, 2020

L 5
R

5
L 4

R
4

L 3
R

3
L 2

R
2

L 1
R

1
L 0

R
0

Y
0

Y
1

Y
2

Y
3

Y
4

Y
5

Pl
at

e
13

. 
D

at
a

si
gn

al
s

fo
r

a
36

-b
it

, 2
-la

ye
r

AL
U

105 April 9, 2020

fu
nc

ti
on

se

le
ct

by
te

se

le
ct

Pl
at

e
14

. 
Co

nt
ro

l s
ig

na
ls

 fo
r

a
36

-b
it

, 2
-la

ye
r

AL
U

106 April 9, 2020

107 April 9, 2020

Sa
m

e
ci

rc
ui

t
Sa

m
e

ch
ip

s
Sa

m
e

bo
ar

d
sp

ac
e

α
i

β
i

γ
i

θ

c
p d

L
R

re
su

lt

C
ar

ry
-s

ki
p

ad
de

r

α
i

β
i

γ
i

θ

c
p d

L
R

re
su

lt

Lo
ga

rit
hm

ic
 s

hi
ft

er

α
i

β
i

γ
i

θ

c
p d

L
R

re
su

lt

Sw
iz
zl
er

α
i

β
i

γ
i

θ

c
p d

L
R

re
su

lt

Su
bs

ti
tu

te
 &

 p
er

m
ut

e

Pl
at

e
16

. 
Su

pe
rp

os
it

io
n

of
 m

aj
or

 c
om

po
ne

nt
s

of
 3

-la
ye

r,
 3

6-
bi

t A
LU

108 April 9, 2020

θ

ne
w

 c
ar

ry

ol
d

ca
rr

y
cp d

6
6

6

1 1

L 3
R

3

α β γ

tr
an

sp
os

e

tr
an

sp
os

e

cp d

6
6

66 6 6 6
1

1

1

L 2
R

2

α β γ

tr
an

sp
os

e

tr
an

sp
os

e

cp d

6
6

66 6 6 6
1

1

1

L 5
R

5

α β γ

tr
an

sp
os

e

tr
an

sp
os

e

cp d

6
6

66 6 6 6
1

1

1

L 4
R

4

α β γ

tr
an

sp
os

e

tr
an

sp
os

e

cp d

6
6

66 6 6 6
1

1

1

L 1
R

1

α β γ

tr
an

sp
os

e

tr
an

sp
os

e

cp d

6
6

66 6 6 6
1

1

1

L 0
R

0

α β γ

tr
an

sp
os

e

tr
an

sp
os

e

cp d

6
6

66 6 6 6
1

1

1

Y
5

Y
4

Y
3

Y
2

Y
1

Y
0

In
pu

ts

O
ut

pu
ts

Pl
at

e
17

. 
Bl

oc
k

di
ag

ra
m

 o
f 3

6-
bi

t A
LU

109 April 9, 2020

Plate 18. Bit slice and carry hardware for a 36-bit, 3-layer ALU

L i R i

α i

β i

γ i

θ

transpose

transpose

fn sel β

fn sel α

fn sel γ

fn sel θ

new carry flag

old carry flag ci

result

inputs

pi

di

c
p

d

6 6

4

4

3

3

6
6

6

6

6

6

6

61

1

1

1

1

.

Bit slice
6 parallel copies

Carry logic
only one is needed

110 April 9, 2020

Plate 19. Decomposition of a random 36-bit permutation

 1

 3

 2

 5

 6

 7

 4

 8

 9 0

11

13

12

15

16

17

14

18

19

10

21

23

22

25

26

27

24

28 29

20

31

33

32

35

30

34  1

 3

 2

 5

 6

 7

 4

 8

 9  0

11

13

12

15

16

17

14

18

19

10

21

23

22

25

26

27

24

28 29

20

31

33

32

35

30

34

 1 3 2  5

 6  7

 4

 8 9

 0

11

1312 151617 14

1819

10

2123 22

25 2627 24 28 29

20

313332 3530 34

 1  3 2  5

 6  7

 4

 8  9

 0

11

1312 15 16 1714

18 19

10

21 2322

25 26 2724 28 29

20

31 3332 3530 34

start

finish

111 April 9, 2020

Plate 20. Size comparison of 3-layer, 36-bit ALU with bank card

112 April 9, 2020

Table 1. Suggested operations for 36-bit, 2-layer ALU

slot normal operation transposing operation

0 unsigned add unsigned shift left I
1 signed add unsigned shift left II
2 mixed add unsigned shift right I
3 unsigned subtract unsigned shift right II
4 signed subtract signed shift left I
5 mixed subtract signed shift left II
6 reverse mixed subtract signed shift right I
7 XOR signed shift right II
8 AND rotate left I
9 OR rotate left II
a short multiply I short multiply II
b permutations permutations
c unary subword ops S-box
d (NAND) inverse S-box
e (AND NOT) swizzles
f (OR NOT) (transposing XOR)

Table 2. SRAM sizes for 36-bit, 3-layer ALU

SRAM Mibit geometry

α5 1 128k × 8
γ5 1 128k × 8

rest ½ 64k × 8

113 April 9, 2020

Table 3. SRAM input bit assignments

layer tribble bit description

α all 0–5 L input
α all 6–11 R input
α all 12–15 function select α
α 5 16 function select for widened α5

β all 0–5 transposed input from α
β all 6–11 R input
β all 12–15 function select β

γ all 0–5 untransposed input from β
γ all 6–11 R input
γ all 12 tribble carry decision from θ
γ all 13–15 function select γ
γ 5 16 extended sign into widened γ5

θ n/a 0–5 carry signals from α
θ n/a 6–11 propagate signals from α
θ n/a 12 old carry fag from control unit
θ n/a 13–15 function select θ

114 April 9, 2020

Table 4. SRAM output bit assignments

layer tribble bit description

α all 0–5 tribble to β layer
α 0–5 6 propagate for θ
α 0–5 7 carry for θ
α 5 7* extended sign for γ5.+ extra input

β all 0–5 tribble to γ layer
β all 6 - unallocated -
β all 7 - unallocated -

γ all 0–5 ALU output
γ 5 5* bit 35 for range check
γ 5 6 bit 36 for range check
γ all 7 tribble zero detect

θ n/a 0–5 carry signals for γ
θ n/a 6 OR of all carry fags from α
θ n/a 7 OR of all propagate fags from α

*not a conflict

115 April 9, 2020

Table 5. Opcode summary for 36-bit, 3-layer ALU

Bitwise boolean Shift and rotate

IGF ignorant false ASL arithmetic shift left
IGT ignorant true ASR arithmetic shift right
XL exactly L LSL logical shift left
XR exactly R LSR logical shift right
NL not L ROL rotate left
NR not R
AND and

Bit scan
NAND nand
OR or LEAD zero all tribbles right of any < 6
NOR nor TRAIL zero all tribbles left of any < 6
XOR exclusive or NUDGE adjust pointer alignment
XNOR exclusive nor
LANR L and not R

Bit permute
RANL R and not L
LONR L or not R PIT permute inside tribbles
RONL R or not L PAT permute across tribbles

Additive Compare

A add MAX maximum
S subtract MIN minimum
RS reverse subtract BOUND trap if R < 0 or R ≥ L
AC add with carry CMP compare and set fags
SC subtract with carry
RSC reverse subtract with carry

Multiply
INC increment
DEC decrement ML tribble multiply low result
NEG negate MH tribble multiply high result

MHNS as above, without left shift

Mix
DSL shift tribble across registers
COPe copy tribble to all positions

MIX key-dependent S-box mix
XIM key-dependent S-box unmix

116 April 9, 2020

Table 6. Additive opcodes

mnemonic # of α β γ θ arg description

A 8 + = + + R add
S 8 − = + + R subtract
RS 8 m = + + R reverse subtract

AC 8 + = + c R add with carry
SC 8 − = + c R subtract with carry
RSC 8 m = + c R reverse subtract with carry

INC 0 + = + + R = 1 increment
DEC 0 − = + + R = 1 decrement
NEG 0 m = + + R = 0 negate

Table 7. Bitwise boolean opcodes

mnemonic # of α β γ θ arg description

IGF 1 = = k 1 R = 0 ignorant false
IGT 1 = = ? 1 R = −1 ignorant true
XL 1 = = ? 0 R exactly L
XR 1 = = ? 1 R exactly R
NL 1 = ! + 0 R not L
NR 1 = = ^ 0 L = −1 not R
AND 1 & = + 0 R and
NAND 1 & ! + 0 R nand
OR 1 ¦ = + 0 R or
NOR 1 ¦ ! + 0 R nor
XOR 1 = = ^ 0 R exclusive or
XNOR 1 = ! ^ 0 R exclusive nor
LANR 1 ¦ = ^ 0 R L and not R
RANL 1 & = ^ 0 R R and not L
LONR 1 & ! ^ 0 R L or not R*
RONL 1 ¦ ! ^ 0 R R or not L

*also known as R implies L

117 April 9, 2020

Table 8. Compare opcodes

mnemonic # of α β γ θ arg description

MAX 8 = = ? < R maximum
MIN 8 = = ? > R minimum
BOUND 2 − = + + R trap if R < 0 or R ≥ L
CMP 4 − = + + R compare and set fags

Table 9. Shift and rotate opcodes

mnemonic # of α β γ θ arg description

ASL 2 o { ℓ 0 { R } arithmetic shift left*
ASR 1 = } r 1 { R } unsigned arithmetic shift right*
ASR 1 r } r 1 { R } signed arithmetic shift right*
LSL 1 = L ℓ 0 { R } logical shift left
LSR 1 = R r 1 { R } logical shift right
ROL 1 = ℓ ℓ 0 { R } rotate L left

*unusual specifcation; see Section 4.5

Table 10. Multiply opcodes

mnemonic # of α β γ θ arg description

ML 1 x = + 0 R L × R low tribble result
MH 1 X * + 0 R L × R high tribble result
MHNS 1 X = + 0 R as above without left shift
DSL 1 * * + 0 R unsigned shift R5 into L0
COPe 1 = z + 0 { R } 6 copies of Rth tribble of L

118 April 9, 2020

Table 11. Bit scan opcodes

mnemonic # of α β γ θ arg description

LEAD 1 = = k / { 6 } zero all tribbles right of any < 6
TRAIL 1 = = k \ { 6 } zero all tribbles left of any < 6
NUDGE 1 n = ? / R adjust pointer alignment

Table 12. Bit permute opcodes

mnemonic # of α β γ θ arg description

PIT 1 = = p 0 R permute inside tribbles
PAT 1 = p + 0 R permute across tribbles

Table 13. Mix opcodes

mnemonic # of α β γ θ arg description

MIX 1 s s s 0 key key-dependent S-box mix
XIM 1 S S S 0 key key-dependent S-box unmix

119 April 9, 2020

Table 14. α operations

slot name p & c output to β

0 = m L
1 + c L + R
2 − c L − R
3 m c R − L
4 & L AND R
5 ¦ L OR R
6 x least sig. tribble of unsigned L × R
7 X r most sig. tribble of unsigned L × R
8 * r check L5 for overfow & replace with R5

9 o r L (range check for left shifts)
a s Rth S-box of L
b S Rth inverse S-box of L
c u R(L) with R being a unary function
d w stacked unary word operations
e n n nudge pointer L to align like R
f r L with α5 sign bit extended for right shift

propagate and carry output uses

c propagate and carry for add and subtract
m magnitude comparison: L < R, L = R, L > R
n right tribble is nonzero; maybe start bit
r signed and unsigned left shift overfow

120 April 9, 2020

Table 11. 15. α operations dealing with signedness

Only α5 uses these variants.

slot name sign p & c output to β

10 = u u m L
11 + u u c L + R
12 − u u c L − R
13 m u u c R − L
14 = u s m L
15 + u s c L + R
16 − u s c L − R
17 m u s c R − L
18 = s u m L
19 + s u c L + R
1a − s u c L − R
1b m s u c R − L
1c = s s m L
1d + s s c L + R
1e − s s c L − R
1f m s s c R − L

propagate and carry output uses

c propagate and carry for add and subtract
m magnitude comparison: L < R, L = R, L > R

Table 16. Propagate and carry encodings from α

p c add & subtract compare left shift

0 0 di = 0 L = R no overfow
0 1 di = 1 L < R overfow if result unsigned
1 0 di = di-1 L > R overfow if result signed
1 1    i, d∀ i = 0* not used overfow regardless

*only used for absolute value stacked unary

121 April 9, 2020

Table 17. β operations

slot name operation implemented

0 = α
1 ℓ rotate α left by R bits
2 L shift α left by R bits
3 R shift α right by R bits
4 { shift α left by R bits preserving sign
5 } shift α right by R bits copying sign
6 s Rth S-box of αT

7 S Rth inverse S-box of αT

8 w stacked unary word operations
9 ! NOT α
a ^ αT XOR R (reminder: R is not transposed)
b * rotate α one tribble left (for multiplication)
c p permute across tribbles
d z frequently used swizzle operations
e - unallocated -
f - unallocated -

Table 18. γ operations

slot carry name ALU output

0 ? mux: R if carry set, else β
1 + β + carry decision from θ
2 k kill: 0 if carry set, else β
3 w stacked unary word operations
4 0 s Rth S-box of β
4 1 S Rth inverse S-box of β
5 0 u R(β) with R being a unary function
5 1 ^ β XOR R
6 0 ℓ rotate β left by R bits
6 1 p permute within tribbles
7 0 - unallocated -
7 1 - unallocated -

122 April 9, 2020

Table 20. Arithmetic overflow conditions

operation result type overflow occurred ie

add, subtract unsigned γ36 is set
add, subtract signed γ35 ≠ γ36

left arithmetic shift unsigned θ6 is set
left arithmetic shift signed θ5 is set

Table 19. θ operations

All slots compute θ6 and θ7 as stated in Table 4.

slot name carry decision output to γ

0 + carry decision for standalone addition
1 c carry decision for addition including old carry
2 < 1111112 if L < R, else 0000002

3 > 1111112 if L > R, else 0000002

4 \ i > 0, set d∀ i+1 per table below; d0 = 0
5 / i < 5, set d∀ i−1 per table below; d5 = 0
6 0 0000002

7 1 1111112

pi ci adjacent carry decision for \ and /

0 0 di

0 1 1
1 0 0
1 1 NOT di 
1 1 replicate d0 (0) or d5 (\) to all di during output

123 April 9, 2020

Table 21. α.u and γ.u unary operations

slot operation

 0 0000002

 1 0000012

 2 1111112

 3 identity
 4 bitwise NOT
 5 0000012 if tribble = 0 else 0000002

 6 0000012 if tribble ≠ 0 else 0000002

 7 1111112 if tribble = 0 else 0000002

 8 1111112 if tribble ≠ 0 else 0000002

 9 count zeros in tribble
10 count ones in tribble
11 count leading zeros in tribble
12 count trailing zeros in tribble
13 count leading ones in tribble
14 count trailing ones in tribble
15 increment tribble with wrap
16 decrement tribble with wrap
17  ( 2⌊ 36 − 1 ) ÷ max( { tribble }, 1 ) ⌋

- unallocated -

63 highest available slot

124 April 9, 2020

Table 22. Stacked unary operations

These use α, β, γ, and θ simultaneously.

slot θ operation

 0 \ negate (with overfow check?)
 1 \ { 0 }
 2 \ identity
 3 + { 0 } if negative else { 2 }
 4 > { 0 } if negative, { 1 } if zero, { 2 } if positive
 5 + |x|, only works when |x| < 230 (with overfow check?)
 6 + unsigned integer to left shift control word
 7 + unsigned integer to right shift control word
 8 + unsigned integer to left rotate control word
 9 + unsigned integer to right rotate control word
10 + tribble summation: 6 × 3-bit 3 × 4-bit→

11 + tribble summation: 3 × 4-bit 2 × 5-bit→

12 + reverse bits
13 / parity, result in 20 position only
14 \ increment word modulo 236

15 / increment bit-reversed word modulo 236

16 \ decrement word modulo 236

17 / decrement bit-reversed word modulo 236

18 / negate bit-reversed word (no overfow check)
19 - unallocated -

63 highest available slot

125 April 9, 2020

Table 23. Single-instruction β and γ tribble permutations

012345 123450 234501 345012 450123 501234 rotations on identity

432105 321054 210543 105432 054321 543210 refections of the above

102345 210345 312045 412305 512340 pair swaps
021345 032145 042315 052341 013245
014325 015342 012435 012543 012354

452301 014523 230145 other move pairs together

024135 031425 2 × 3 and 3 × 2 transposes

031524 142035 253140 304251 415302 520413 count out of circle by 3s

035124 140253 251304 302415 413520 524031 count out by 3s backward

102354 315042 542310 513240 other 2-pair rotations
021435 034125 043215 

103254 240513 453201 521430 534120 other 3-pair rotations

120534 201453 symmetric half rotations

034512 035421 105243 130542 254310 510432 needed to compose all 6 !

Table 24. Compact set of tribble permutations for two instructions

023541 031542 032451 045231 054132
054321 103245 120453 140325 204531
235041 240351 253401 305421 324051
341205 342501 350241 403125 403251
423015 425301 430521 435102 452031
502341 520431 534120 534201 543021

126 April 9, 2020

Table 25. Frequently used swizzle operations for β.z

slot operation

 0 6 copies of tribble 0
 1 6 copies of tribble 1
 2 6 copies of tribble 2
 3 6 copies of tribble 3
 4 6 copies of tribble 4
 5 6 copies of tribble 5

- unallocated -

63 highest available slot

Table 26. 2-cycle leading and trailing bit manipulation

example: find 1 normal output inverted output
operation normal output find 0 find 1 find 0 find 1

invert bit 0101100   0101000→ x OR y w AND x x NOR y w NAND x
isolate bit 0101100   0000100→ x RANL y w RANL x x LONR y w LONR x
fll to bit 0101100   0101111→ x AND y w OR x x NAND y w NOR x
mask until bit 0101100   0000011→ x LANR y w LANR x x RONL y w RONL x
mask thru bit 0101100   0000111→ x XOR y w XOR x x XNOR y w XNOR x

These formulas are for trailing bit manipulation. The input is x,
w = ( x − 1 ) mod 236, y = ( x + 1 ) mod 236. Use the stacked unary
operations for w and y to avoid false positive overfow errors from
the INC and DEC opcodes. For leading bit manipulation in two cycles,
use the bit-reversed stacked unary operations for w and y.

127 April 9, 2020

Listing 1. Assembly code for 36-bit unsigned multiplication

72-bit result d : c = a * b requires 53 CPU cycles.

t = b copy {5}
; m not used yet
c = a mhns t
d = d adc 0
d = d dsl c
c = c lsl {6}
m = a ml t
c = c add m
d = d adc 0

t = b copy {4}
m = a mhns t
c = c add m
d = d adc 0
d = d dsl c
c = c lsl {6}
m = a ml t
c = c add m
d = d adc 0

t = b copy {3}
m = a mhns t
c = c add m
d = d adc 0
d = d dsl c
c = c lsl {6}
m = a ml t
c = c add m
d = d adc 0

t = b copy {2}
m = a mhns t
c = c add m
d = d adc 0
d = d dsl c
c = c lsl {6}
m = a ml t
c = c add m
d = d adc 0

t = b copy {1}
m = a mhns t
c = c add m
d = d adc 0
d = d dsl c
c = c lsl {6}
m = a ml t
c = c add m
d = d adc 0

t = b copy {0}
m = a mhns t
c = c add m
d = d adc 0
d = d dsl c
c = c lsl {6}
m = a ml t
c = c add m
d = d adc 0

128 April 9, 2020

Listing 2. Python 3 specification of S-boxes for the MIX opcode

#!/usr/bin/python3

def perm(): # obtain a permutation of 64 objects
 avail = list(range(64))
 done = []
 while avail:
 perm.fract *= len(avail)
 rand = perm.fract >> root_bits
 perm.fract &= root_mask
 done.append(avail[rand])
 del avail[rand]
 return tuple(done)

def boxes(): # obtain 64 permutations for 1 RAM
 return tuple(perm() for i in range(64))

def row(): # obtain perms for a row of 6 RAMs
 return tuple(boxes() for i in range(6))

def run(): # obtain perms for 3 rows of RAMs
 return row(), row(), row()

root_bits = 341000 # needed = 18 * 64 * (64!).bit_length()
root_mask = (1 << root_bits) - 1
half_bits = 2 * root_bits # must be even
half = 1 << half_bits - 1 # 1/2 in this radix
root = 3 << root_bits - 2 # initial estimate for (1/2)**(1/2)

print("Computing %s bits of sqrt(2)/2 " % root_bits, end="")
while abs(half - root * root) > 2 * root:
 root = (root + half // root) >> 1
 print(end = ".", flush = True)
print(" done!")
perm.fract = root # initial irrational to extract from

v = run() # v is the output of this run
print(v[2][5][63]) # show last permutation as a check

	1.  Problem and approach
	1.1  Manifesto on the security of CPUs
	1.2  Practicality and economy of building CPUs
	1.3  Logic family selection
	1.4  SRAMs as electrical components
	1.5  Proposal’s focus on ALUs
	1.6  Questions for research

	2.  Essential logic blocks of SRAM ALUs
	2.1  Hierarchy of ALU capabilities
	2.2  Simple lookup elements
	2.3  Arbitrary geometry adders
	2.4  Carry-skip adders
	2.5  Swizzlers
	2.6  Logarithmic shifters
	2.7  Semi-swizzlers
	2.8  Substitution-permutation networks
	2.9  Fast multipliers

	3.  2-layer ALU designs
	3.1  An elegant 2-layer ALU for 36-bit words
	3.2  A tiny ALU for 18-bit words

	4.  3-layer ALU designs
	4.1  An elegant 3-layer ALU for 36-bit words
	4.2  Additive opcodes
	4.3  Bitwise boolean opcodes
	4.4  Compare opcodes
	4.5  Shift and rotate opcodes
	4.6  Multiply opcodes
	4.7  Bit scan opcodes
	4.8  Bit permute opcodes
	4.9  Mix opcodes
	4.10  α layer operation
	4.11  α layer operation, leftmost tribble
	4.12  β layer operation
	4.13  γ layer operation
	4.14  θ operation
	4.15  Miscellaneous unary operations
	4.16  Leading and trailing bit manipulation

	5.  Implications
	5.1  Characteristics of surrounding CPU
	5.2  Mixed signedness and practical overrange checks
	5.3  Security
	5.4  Anticipated performance
	5.5  Suitable uses and limitations
	5.6  Social and psychological benefit
	5.7  Originality of research and contributions made

	6.  References

