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Chapter 1

Architecture Introduction

1.1 Machine word structure

The Dauug | 36 word size is 36 bits. The rightmost bit is bit 0 and has significance 20. The
leftmost is bit 35 with significance 235 or −(235) for unsigned or signed words respectively.
Bit positions may also be written as base-36 characters, with z and 0 as the left and right
extrema.

Individual arithmetic logic unit (ALU) components are too small for 36-bit operands.
Instead, they operate on 6-bit subwords called tribbles. For this reason, many assembler
instructions process their left and right operands in pairs of tribbles. Tribble 5 is leftmost,
and tribble 0 is rightmost.

As words pass through the ALU, they undergo a self-inverse transposition two times.
These transpositions are simply a matter of wiring and do not use any active components.
A word is transposed by feeding the ith bit of tribble j to the j th bit of tribble i for all i,
j ∈ {0...5}. The written notation uses the top superscript: if w is a word, then w> is its
transpose, and w>> is w transposed twice, which is simply w.

The bit positions of w and w> can also be written as 6×6 square matrices. The transpose
operation is the ordinary reflection through the main diagonal:

w

z y x w v u

t s r q p o

n m l k j i

h g f e d c

b a 9 8 7 6

5 4 3 2 1 0

w>

z t n h b 5

y s m g a 4

x r l f 9 3

w q k e 8 2

v p j d 7 1

u o i c 6 0

For linear notations, the transpose operation can be written thus. If

zyxwvu tsrqpo nmlkji hgfedc ba9876 543210 name the bits of b, then
ztnhb5 ysmga4 xrlf93 wqke82 vpjd71 uoic60 are the bits of b>.

1.2 Register organization

Dauug | 36 minicomputers have 65 536 36-bit registers, allowing up to 128 simultaneously
available programs called users to have 512 registers each. Within a program, all registers
have identical capabilities. To lessen bottlenecks in the CPU, each register has two copies:
one supplies the left argument of an operation, and one supplies the right. When writing a
result to a register, the CPU updates both copies simultaneously.

1



2 CHAPTER 1. ARCHITECTURE INTRODUCTION

1.3 Register splitting and reverse subtraction

The left and right copies of a register are identical in the current architecture. If fast
hardware multiplication is added to a future Dauug | 36 specification, the 72-bit product
will be stored simultaneously with the 36 most and least significant bits in the left and
right register files respectively. Operations that follow hardware multiplication will need to
write their code to retrieve the 36-bit halves of the product via the correct operand. For
addition this is easy: the operation product + 0 retrieves the most significant half, and
0 + product retrieves the least significant half.

Subtraction works differently, because 5 - product retrieves the least significant half
and subtracts it from 5, but how to subtract 5 from the register instead? product - 5

doesn’t work, because that’s five fewer than the most significant 36 bits. There are ob-
vious two-instruction solutions, but the hardware multiplier would be added to make the
architecture faster. What is needed is a one-instruction solution.

The solution is a reverse subtract arithmetic operation. The syntax 5 ~- product takes
the right copy of the register file and then subtracts 5 from it. The tilde symbol ˜ expresses
that the arguments “reverse” before the operation. Although hardware multiplication is not
available as an option yet, reverse subtraction has been a standard feature from the outset
in order to preserve continuity in the future.

1.4 Organization of data memory

Dauug | 36 program, data, and stack memory are stored on physically separate SRAM chips
and have distinct address spaces.

Data memory is memory programs can read to and write from for temporary storage as
they run. Data memory is 36 bits wide and is addressable only as words, so location n + 1
is 36 bits past location n, and both locations are word-aligned. There is no cache, because
the architecture already can read to or write from this memory in one CPU cycle without
stalling.

Data memory is allocated in pages of 8 192 words (36 864 bytes) and protected via a page
table. This page size ensures that a minimal configuration of 1 Mi words of data memory
can support 128 users with one small page for each. In principle, certain classes of short
programs can run without any data memory whatsoever, because of the large number of
available registers. But these programs would have miniscule support from the operating
system, because the primary data exchange between the OS and user is via data memory
at specified addresses.

There is no out-of-bounds exception for memory reads or writes. Instead, out-of-bounds
memory accesses are real operations on live memory to whatever page the operating system
has directed them to. The operating system is responsible for providing a mechanism for
programs to query what memory range(s) are valid, because programs may get confused
if they stray out of bounds. Wayward programs will not, however, have access to memory
owned by other programs. There are no RowHammer-class security attacks against SRAM
chips, so a rogue program’s ability to cause trouble are strictly limited to what the operating
system lets it do.

All memory privileges for a given page are identical; the architecture does not support
read-only pages. Any page that can be read by a user can be written by that user, and vice
versa.

Dauug | 36 uses a load-store architecture, meaning that instructions either do an ALU
operation, or do a memory operation. From the programmer’s perspective, both never
happen in the same instruction. This segregation simplifies the instruction set, keeps all
instructions to a single CPU cycle, and frees the ALU during memory operations to aid
with offset calculations.
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1.5 Organization of program memory

The program memory contains the instructions that are fetched, decoded, and executed in
order to run a program. Other than this fetch-decode-execute process, which happens trans-
parently, users have no access at all to their program memory. Enforcement of this instruc-
tion works very simply: program memory can only be accessed via specific CPU instructions,
and the operating system’s loader refuses permit any such instructions in application pro-
grams. The rigid machine instruction format (see Section 1.7) makes it straightforward to
exclude specific opcodes.

The architecture offers no hardware protection or page table scheme for program mem-
ory whatsoever. By using a relocating loader to finalize addresses immediately prior to
program execution, programs can be scanned by the loader to ensure that all CALL and
JUMP destinations are legitimate for the user runnin. These instructions are only available
in fixed-address formats, so there is no means for evading this filtering. The drawback to this
approach is that pointers to functions, setjmp-like schemes in C, and pointer-array-based
enumerated cases are not available in this architecture. The simplicity and security gained
in most cases will greatly outweigh these drawbacks.

Operating systems can easily offer linking to library code that shares the same resources
and privileges as the user running. All that is necessary is to have the code in memory,
and the application can simply CALL it directly. The OS loader is responsible for allowing
specific program-external addresses to be called, and disallowing calls to other addresses.
These external routines cannot not in themselves gain privileges, registers, or memory access
that their user does not already have, but they can make calls to the operating system on
the user’s behalf, and the operating system can proxy additional privileges or memory access
as needed.

Although program memory does not use a page table, it is divided into pages of 8 192
words. The reason is that the instruction pointer cannot count sequentially, but uses a linear
feedback shift register (LFSR) to step through the 13 least significant bits. The reason is
that fast counter ICs with parallel input and output are not manufactured for sale, so the
program counter is implemented with XOR gates and D flip flops instead. This behavior
by the instruction pointer is transparent to application programmers, and the assembler
automatically inserts JUMP instructions where page boundaries need to be passed over.

Executable file formats for Dauug | 36 disregard the non-linear instruction pointer, and
appear in listings as if the space is linear. The exception is these formats do contain the
page boundary JUMP instructions. The operating system’s loader assumes all responsibility
for relocating instructions to their correct destinations and updating CALL and JUMP targets.

Instructions at addresses that end with 13 zeros are single-instruction infinite loops,
because the LFSR cannot progress from zero. These locations can only be reached by JUMP,
CALL, or system resets. But they can be left by branching; for example, a JUMP at address
360000‘0 to location 360001‘o would escape the loop.

1.6 Organization of stack memory

Every user has an instruction pointer stack that is 511 addresses deep. The current instruc-
tion pointer is at the top of the stack, and is incremented immediately after the instruction
is fetched. Later in the cycle if a subroutine is called, the subroutine’s address is pushed
onto the stack as the new instruction pointer, with the previous incremented pointer imme-
diately beneath it. When the subroutine returns, the top address is removed, and execution
resumes with the next instruction.

Because the architecture does not support stack-based recursion via CALL, the assembler
is able to ensure that CALL loops cannot occur. The assembler will also determine the
maximum call depth and ensure that the stack does not overflow. Thus there is no need,
and no provision, for hardware detection of stack overflow. There is never any data on the
stack, and the only access to the stack contents is via CALL and RETURN. The assembler
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also disallows RETURN instructions within the topmost scope, so there is also no need, and
no provision, for hardware detection of stack underflow. Note that even if the stack could
overflow or underflow, other programs would not be affected. Thus an “evil assembler tool”
is not a vector for stack-based system compromises.

1.7 Machine instruction format

The Dauug | 36 architecture implements four instruction formats, numbered after the num-
ber of fields used. All fields are a multiple of 9 bits in size, and the opcode field is always
the most significant 9 bits.

Format I

opcode ignored

bits 35–27 bits 26–0

Format I instructions include CRF and NOP. The Dauug | 36 hardware is guaranteed to ignore
the “ignored” portion of the instruction. The virtual machine, on the other hand, sometimes
uses this extra space to provide diagnostic capability such as SAY that is not available on
the hardware. (SAY is implemented as a parmeterized NOP.)

Format II

opcode branch target in program memory

bits 35–27 bits 26–0

Format II is for CALL and JUMP. All branch targets are physical addresses: program memory
is not protected by hardware and does not use a page table.

Note that program memory addresses cannot exceed 27 bits in this architecture. Most
systems built for this architecture are not expected to anywhere close to this much RAM in
the near term.

Format III

opcode register address in data memory

bits 35–27 bits 26–18 bits 17–0

Format III is for loading and storing registers from hardcoded addresses in data memory.
This format may also be used for transferring in immediate values 18 bits at a time. More
elegantly but less flexibly, immediate values may be treated as loads from a constant table
in data memory. Note the address space for hardcoded addresses is ample at 256 Kiwords
(1152 Kibytes).

Format IV

opcode dest. register left register right register

bits 35–27 bits 26–18 bits 17–9 bits 8–0

Format IV is for most CPU instructions, especially ALU operations requiring a destination
register, left operand register, and right operand register. Except for the always-leftmost
opcode, the field order purposely conforms to infix arithmetic in the form c = a + b.



Chapter 2

Structure of Dauug|36
Assembler Programs

2.1 Source code character set

Dauug | 36 assembly language programs are written in 7-bit ASCII. The only supported
symbols are 7 (tab), 10 (newline), and 32–126 (space through ˜). In the future, the UTF-8
encoding may be permitted. No other encodings will be supported.

New readers may notice unconventional or bewildering uses for certain characters. Table
2.1 summarizes some of those uses. It does not include characters that may appear in various
operators and operator-like symbols, which appear separately as Table 5.1.

Table 2.1: Peculiar uses for various ASCII characters

Symbol Use See section

0–9 digits 0–9; identifier tails 2.3, 2.4
a–z identifiers; digits 10–35 2.4, 2.3
A–Z identifiers; digits 36–61 2.4, 2.3
@ $ digits 62 and 63 2.3
‘ numeral base if not 10 2.3

digit grouping; identifier tails 2.3, 2.4
. ’ identifier tails 2.4
; single-line comments 2.2
( ) enclosed comments 2.2
< > type coercion 5.3
- ranges in permutation notations 2.9
tab same as space
newline end of statement

2.2 Comments

Comments begin with a semicolon and extend to the end of the line. For example:

open_secret = 314159 ; ten thousand times pi

Those are called single-line comments, because they cannot span multiple lines. Also
supported are inline comments, which begin and end explicitly with parentheses. An inline

5
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comment can span as many lines as desired and can be used to “comment out” a bunch
of code, or to provide space within a source file for documentation. No parsing or syntax
checking is done inside inline comments, although only the ASCII symbols authorized by
Section 2.1 should be used. For example:

x = (Dare I choose zero here?!?) 0

Inline comments do not nest. So how does one comment out a block of code or documen-
tation that contains parentheses itself? This is done using multiple consecutive parentheses.
Inline comments don’t technically begin with the ( character, but with a series of one or
more consecutive ( characters. They end with an equal number of consecutive ) characters.
So (( and )) can enclose blocks that contain no more than one consecutive left parenthesis.
Notably but perhaps less usefully, ( and ) can enclose blocks that contain two consecutive
left parentheses, but not isolated ones. In any event, the runs of parentheses that begin and
end inline comments can be as long as availabile memory permits. For example:

diameter = 10

(((

The circumference is exactly pi times the diameter,

but this program does not use any floating point

(so pi is going to be 3).

)))

double_diameter = diameter + diameter

circumference = diameter + double_diameter

Inline comments can, of course, allow a line of source code to continue after the closing
parenthesis (-es). Inline comments can also be placed around newlines in order to provide
line continuations. For example:

twelve_hundred = (

) 1200

fixed_point_thirty_six_bit_approximation_of_pi_divided_by_four (

) = 110010_010000_111111_011010_101000_100010‘b

All comments, whether single-line or inline, behave as spaces in terms of the assembly
language syntax. So identifiers, numbers, symbols, etc. cannot be spliced together through
inline comments.

2.3 Numbers

A number is an integer numeric constant for the assembler. The basic format is a single
optional + or -, any number of optional leading zeros, a string of digits in radix 10 or some
indicated radix between 1 and 64, and an optional radix specification.

Digits in radices up to 10 are the familiar 0 through 9. Radices between 11 and 64
use the lowercase letters, uppercase letters, and finally @ and $ to fill the necessary digits
through 63. To preclude surprises, case is always sensitive for digits, implying that a–f are
valid hexadecimal digits, but A–F are not.

The symbol ‘ is called a backtick and is used to introduce a radix other than 10. It’s
ASCII character 96. Following the backtick is either a decimal integer in the range 1–64
(with any number of optional leading zeros), or one of the letters u, b, o, d, h, or t indicating
bases 1, 2, 8, 10, 16, or 64 respectively. These letters stand for unary , binary , octal , decimal ,
hexadecimal , and tetrasexagesimal or tribble. For consistency, there is no x option to mean
hexadecimal: that word doesn’t start with x. Note that radix one is a unary number system,
with all places having the value one.

Here are a few ways of writing 19 other than the usual:
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1110111100111110001111111‘1 0010011‘b +201‘3 19‘10 13‘h

To aid legibility of long numbers, the string of digits prior to the backtick may contain
any number of (underscores) in any position as grouping symbols. For example, the largest
36-bit unsigned number may be written 68 719 476 735 instead of 68719476735 to make it
clear the magnitude is about 70 billion. Here are some decimal numbers that are important
to the assembler with their base 64 representations:

-34 359 738 368 -w00000‘t most negative 36-bit number
0 000000‘t zero

34 359 738 367 v$$$$$‘t most positive signed 36-bit number
68 719 476 735 $$$$$$‘t most positive unsigned 36-bit number

The base 36 digits are also used in permutation notations, along with hyphens to abbre-
viate ranges. See also Section 2.9.

Every number in this book, as well as every number in Dauug | 36 assembly programs,
is in base 10 unless expressly stated otherwise in the format provided by this section. For
convenience, a radix conversion chart appears as Table 2.2.

Table 2.2: Digits for bases up to 64

0 0 8 08 g 16 o 24 w 32 E 40 M 48 U 56
1 1 9 09 h 17 p 25 x 33 F 41 N 49 V 57
2 2 a 10 i 18 q 26 y 34 G 42 O 50 W 58
3 3 b 11 j 19 r 27 z 35 H 43 P 51 X 59
4 4 c 12 k 20 s 28 A 36 I 44 Q 52 Y 60
5 5 d 13 l 21 t 29 B 37 J 45 R 53 Z 61
6 6 e 14 m 22 u 30 C 38 K 46 S 54 @ 62
7 7 f 15 n 23 v 31 D 39 L 47 T 55 $ 63

2.4 Identifiers

Identifiers are “words” used to refer to either registers or branch destinations. They have
no limit as to number of characters. They work much like variables and labels do in other
programming languages, except in the case of variables, they are always register variables.
Identifiers are case-sensitive, and the first character—the identifier head—must be a letter.
The remaining zero or more characters is the tail and may contain letters, digits, underscores,
single quotes (ASCII 39), and periods (ASCII 46).

The rationale for allowing ’ is that often in code, some quantity or location is expressed in
terms of two sets of units or coordinate systems. The double quote (ASCII 34) is reserved for
other uses, so if you want two quotes in a register name, use two single quotes. Underscores
are permitted because they are traditional; however, they cannot be the first character, or
there would be ambiguity as to whether 1 refers to a register name or the number one with
a strange grouping indicator. Periods are allowed in identifiers as a lightweight means of
denoting composite “objects” with more than one member. In actuality, they are distinct
variables.

Here are some valid identifiers:

j pt.x pt.y F F’ F’’ e.2.71828 another_example r(adius)

The last example is a trick. The identifier is actually r, and the text (adius) is an inline
comment that the assembler disregards. This technique allows the programmer to clarify
what is meant when using a short name for convenience. Here’s a longer example, where
two variables are conferred advantages of both short and long names:
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unsigned r(adius) d(iameter)

r = 10

d = r + r

2.5 Abbreviating keywords

A few frequently-used longer assembler keywords have been given abbreviations that can be
used as alternatives. These abbreviations all end with a mandatory period. No spaces are
allowed to set off the period; it is part of the abbreviation. On the other hand, a space is
mandatory after the period, as it is not considered punctuation. Table 2.3 provides a list of
these abbreviations.

Table 2.3: Keyword abbreviations

c. call

j. jump

r. return

s. signed

u. unsigned

2.6 Undocumented keywords and instructions

This manual is oriented towards how to write Dauug | 36 programs, and not so much how
the architecture works internally. Some keywords or instructions are not presently intended
for writing programs, are esoteric, and may come and go as system features. In many cases,
their documentation would require architectural explanations that are beyond the scope of
this document. Table 2.4 lists these keywords and instructions.

Table 2.4: Undocumented keywords and instructions

Name Comment for architecture maintainers

eject something involving assembly listings
emit bypass assembler with handwritten executable code
ham3 third instruction of popcount sequence
un.a simple unary, alpha layer
un.b simple unary, beta layer
un.g simple unary, gamma layer
stun.a stacked unary w/ specific theta, carry in, flags
stun.b stacked unary w/ specific theta, carry in, flags
stun.c stacked unary w/ specific theta, carry in, flags
stun.d stacked unary w/ specific theta, carry in, flags
stun.e stacked unary w/ specific theta, carry in, flags
stun.f stacked unary w/ specific theta, carry in, flags
stun.g stacked unary w/ specific theta, carry in, flags
stun.h stacked unary w/ specific theta, carry in, flags
stun.i stacked unary w/ specific theta, carry in, flags
stun.j stacked unary w/ specific theta, carry in, flags
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2.7 Declaring registers

Every running Dauug | 36 program is allocated 512 general-purpose registers, allowing a lot
of computing without needing to save or load registers to or from primary storage. All
registers have the same capability, so there is no need or provision to address them by
register number via the assembler. There is also no indirect register access; for instance, a
loop can’t be written to go through all of the registers.

To allocate a register for a program, it has to be declared with a name, and given
a default assumption as to whether arithmetic operations should treat it an unsigned or
signed quantity. If the register is not intended to store a quantity, it is suggested to specify
it as unsigned. To declare registers, simply use the signed or unsigned keyword anywhere
within the code where the register is used. It is not necessary for a register to be declared
“prior to use” so long as the assembler can find the declaration somewhere. The form is
simply the signedness, and as many names as desired. Do not use any commas. Examples:

unsigned five ten

signed ; any # of names, including zero, is allowed

five = 5

ten = 10

fifteen = five + ten

twenty = ten + ten ; ERROR: register "twenty" is not declared

signed fifteen ; okay to declare after use

A register’s signedness refers to whether it is unsigned or signed. So in the example
above, the signedness of five is said to be unsigned, and the signedness of fifteen is
signed. Don’t feel locked in by a particular signedness declaration. Signedness actually
applies to the operations being performed, not the physical register itself. Section 5.3 shows
how to override a register’s declared signedness for a specific need.

2.8 Overriding register signedness

A register’s signedness affects the range of numbers it can represent without information loss.
Through awareness of the signedness of their source and destination registers, operations
such as addition and arithmetic shift are able to set error flags in the event of an out-of-range
result.

Sometimes the signedness of a register that has been declared with the signed or
unsigned keyword may not represent the programmer’s intent under an exceptional cir-
cumstance. To overcome this, <signed> and <unsigned> casts are provided. These casts
don’t actually affect registers, but instead alter the register type information provided to
operations like subtraction or assignment. For instance:

signed s

unsigned u z

z = 0 ; constant zero

s = -5 ; no problem

u = z - s ; no problem; u is now 5

u = s - z ; underflow; sets the T and R flags

u = z + s ; underflow; sets the T and R flags

u = <unsigned> s ; no problem; u is now 2**36 - 5

<signed> u = s ; no problem; u is now 2**36 - 5

s = u ; overflow; sets the T and R flags
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2.9 Permutation notations

Permutations of tribbles are notated in a 6-digit shorthand. Each digit shows the original
position of each bit, numbered from the right starting with zero, in the permuted outcome.
Thus if the permutation 321054 is applied to the tribble 010011‘b, the result is 001101‘b.

Permutations of 36-bit words use the same notation. All 10 numerals and 26 lowercase
letters are necessary. In assembler source code, the few places where 36-bit permutations
appear are written without spaces, quotation marks, or the ‘36 suffix. Underscores are
allowed in any position for legibility. Hyphens provide a shorthand for contiguous ascending
or descending ranges of bit positions. Here are some examples:

unsigned in transpose left_rev right_rev full_rev

; ...

tranpose = in perm ztnhb5_ysmga4_xrlf93_wqke82_vpjd71_uoic60

left_rev = in perm i-zh-0

right_rev = in perm z-i0-h

full_rev = in perm 0-z

; ...

transpose = 0 txor in

Note: Using PERM here to compute transpose is for documentation purposes only. PERM
is a macro that for most permutations expands to five instructions. The TXOR instruction
as shown above can transpose a word in one instruction.



Chapter 3

Instruction reference

This chapter tabulates the Dauug | 36 opcodes and macros alphabetically by mnemonic.
What these entries have in common is, they all translate directly into machine-language
instructions that are fetched from program memory, decoded, and executed as a program
runs. This chapter does not list keywords like unsigned, casts like <wrap>, and other
language features that may control the assembler and affect program execution, but do not
themselves emit executable instructions into the object file.

A Add
c = a + b

Register signedness Flag set if

Left unsigned or signed N a + b < 0
Right unsigned or signed Z a + b = 0
Dest. unsigned or signed T c cannot fit a + b

8 opcodes total R T is set or R is already set

This is the instruction for ordinary addition of 36-bit numbers. It does not have a carry
input or carry output. It is fully range checked, so the T and R flags will indicate when the
sum does not fit in 36 bits.

The 36-bit unsigned and/or signed operand registers are extended into 38-bit signed
quantities, which then are added to produce a 38-bit signed sum that will not overflow. The
N and Z flags are set based on the original 38-bit sum. The 36 least significant bits of the
sum are stored in the destination register, which may be signed or unsigned. Flags T and
R are set if the full sum does not fit, otherwise T is cleared and R is left unchanged.

11



12 CHAPTER 3. INSTRUCTION REFERENCE

ABS Absolute value
c = abs b

Register signedness Flag set if

b signed N never; flag is cleared
c unsigned or signed Z b = 0

2 macros total T c cannot fit |b|
R T is set or R is already set

This is a builtin macro that expands to two CPU instructions. The absolute value of
b is written to c. This macro has full range checking: if b is −(235) and c is signed, the
result will not fit, and flags T and R will be set, and Z will be cleared as the true result is
not zero. Otherwise T is cleared, R is left unchanged, and Z is set of the result is zero. N
always is cleared.

If −(230) ≤ b < 230 can be guaranteed, FABS is a faster alternative to ABS.
ABS is not implemented for and will not assemble if b is unsigned.

AC Add with carry

c = a ++ b

Register signedness Flag set if

Left unsigned or signed N a + b + T < 0
Right unsigned or signed Z a + b + T = 0
Dest. unsigned or signed T c cannot fit a + b + T

8 opcodes total R T is set or R is already set

This is the final instruction for multiple-precision addition of integers larger than 36 bits.
It uses the T flag as a carry input, but has no carry output. It is fully range checked, so the
T and R flags will indicate when the multiple-precision sum does not fit.

This instruction is preceded by AW for 72-bit addition, or by AWC for 108-bit and larger
addition. It is never preceded by A, because A conflicts for range checking.

The 36-bit unsigned and/or signed operand registers are extended into 38-bit signed
quantities, which then are added along with the T flag to produce a 38-bit signed sum that
will not overflow. The N and Z flags are set based on the original 38-bit sum. The 36 least
significant bits of the sum are stored in the destination register, which may be signed or
unsigned. Flags T and R are set if the full sum does not fit, otherwise T is cleared and R
is left unchanged.
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AND AND
c = a & b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

AND sets the destination to the bitwise AND of its operands. N and Z are set as if the
destination is a signed register. T and R do not change.

ASL Arithmetic shift left
c = a asl cw

Register signedness Flag set if

a unsigned or signed N a < 0
cw ignored Z a = 0
c unsigned or signed T c cannot fit full result

4 opcodes total R T is set or R is already set

The 2-instruction PSL and ASL sequence enables safe, range-checked power-of-two mul-
tiplication, despite its many signedness combinations and corner cases. ASL multiplies left
operand a by a non-negative power of two, and writes the product’s least 36 significant bits
to destination c. If the full result does not fit in c without loss of information, the T and R
flags will be set, otherwise T is cleared and R does not change.

The PSL instruction is used to convert the desired exponent of two into control word cw.
This exponent is clamped to a maximum of 36, and then copied into all tribbles.
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ASR Arithmetic shift right
c = a asr cw

Register signedness Flag set if

a unsigned or signed N a < 0
cw ignored Z a = 0
c unsigned or signed T c cannot fit full result

4 opcodes total R T is set or R is already set

The 2-instruction PSR and ASR sequence enables safe, range-checked division by powers
of two, despite its many signedness combinations and corner cases. ASR divides left operand
a by a non-negative power of two with rounding towards −∞, and writes the quotient’s
least 36 significant bits to destination c. If the rounded quotient does not fit in c without
loss of information, the T and R flags will be set, otherwise T is cleared and R does not
change.

Note that because of the rounding towards −∞, ASR is not (for most purposes) a stand-
alone means for numbers that are or may be negative by powers of two.

The PSR instruction is used to convert the desired exponent of two into control word
cw. If the exponent is 36 or more, it is clamped to 36. If the exponent is zero, it is left as
zero. Otherwise, the exponent is subtracted to 36 in order to represent it from the internal
hardware perspective of a left rotation. After this clamping, leaving as zero, or subtracting,
the exponent is copied to all tribbles.

AW Add and wrap

<wrap> c = a + b

Register signedness Flag set if

Left ignored N never; flag is cleared
Right ignored Z a + b = 0
Dest. ignored T a + b ≥ 236

1 opcode only R flag does not change

This is the first instruction for multiple-precision addition of integers larger than 36 bits.
It has no carry input, and uses the T flag as a carry output. It does not require range
checking and therefore has no effect on the R flag.

This instruction is followed by AC for 72-bit addition. For 108-bit and larger integers, it
is followed by AWC.

The three registers are treated as unsigned without regard to how they are declared.
The operands are added, and the 36-bit sum is stored in the destination. Flag N is cleared.
Flag Z will be set if the left and right operands are both zero, and cleared otherwise because
the sum, however truncated, cannot truly be zero. Flag T is set if a carry is generated, and
cleared otherwise. Flag R does not change.
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AWC Add and wrap
with carry

<wrap> c = a ++ b

Register signedness Flag set if

Left ignored N never; flag is cleared
Right ignored Z a + b + T = 0
Dest. ignored T a + b + T ≥ 236

1 opcode only R flag does not change

This is the intermediate instruction for multiple-precision addition of integers larger than
72 bits. It uses the T flag as a carry input and carry output. It does not require range
checking and therefore has no effect on the R flag.

In 108-bit addition, this instruction is preceded by AW and followed by AC. For 144-bit
and larger integers, it is preceded by AW or AWC and followed by AWC or AC depending on its
position.

The three registers are treated as unsigned without regard to how they are declared. The
operands are added along with the T flag, and the 36-bit sum is stored in the destination.
Flag N is cleared. Flag Z will be set if both operands and the incoming T flag are all zero,
and cleared otherwise because the sum, however truncated, cannot truly be zero. Flag T is
set if a carry is generated, and cleared otherwise. Flag R does not change.

BO - Brighten ones

c = bol b c = bor b
c = boli b c = bori b

Register signedness Flag set if

All ignored N bit 35 of the result is set
4 opcodes Z all result bits are zero

BOL, BOLI, BOR and BORI are builtin macros that expand to two CPU instructions each.
BOL/BOR ignores the leading/trailing ones of b, replaces the adjacent bit with one, replaces
all other bits with zeros, and writes the result to c. BOLI/BORI is BOL/BOR with all output
bits inverted. N and Z are set as if the destination is a signed register. T and R do not
change. Section 5.3 presents another synopsis.
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BOUND Bound
bound i < lim

Register signedness Generate interrupt if

i ignored i < 0 or i ≥ lim

lim unsigned or signed
2 opcodes total

This instruction provides a two-sided array boundary check in one CPU cycle. The array
presumably has less than 235 elements, which is guaranteed to be the case if less than 144
GiB of RAM is installed. This allows index i to have any signedness, because it will be
unconditionally out of bounds—either because negative or excessively positive—whenever
the leftmost bit is set.

The upper limit lim may be signed or unsigned, and represents the number of elements
that may be safely accessed. If lim ≤ 0, index i is always out of bounds, because there is
no safe memory location for access. Otherwise, the maximum permitted index is lim−1. If
i is out of bounds, this instruction generates an interrupt, otherwise this instruction does
nothing. In any event, no registers are written to, and no flags change.

The required < in the syntax is to remind the programmer of the operand positions.

BZ - Brighten zeros

c = bzl b c = bzr b
c = bzli b c = bzri b

Register signedness Flag set if

All ignored N bit 35 of the result is set
4 opcodes Z all result bits are zero

BZL, BZLI, BZR and BZRI are builtin macros that expand to two CPU instructions each.
BZL/BZR replaces the leading/trailing zeros of b with ones, replaces the adjacent bit with
one, replaces all other bits with zeros, and writes the result to c. BZLI/BZRI is BZL/BZR
with all output bits inverted. N and Z are set as if the destination is a signed register. T
and R do not change. Section 5.3 presents another synopsis.
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CALL Call
call subr call < subr
call -t subr call <= subr
call +t subr call == subr
call -r subr call != subr
call +r subr call >= subr

call > subr

No registers used No flags changed

11 opcodes total

The CALL instructions pushes the current instruction pointer on the call stack, and
transfer control to the subroutine with name subr. When a RETURN instruction is executed
by the subroutine later, the instruction on the stack will be popped, and the program will
continue with the instruction following CALL.

For security reasons, the call stack is stored in dedicated SRAM devices. The sole elec-
trical access to the stack SRAM’s data connects to the instruction pointer exclusively. The
only instructions that can access this memory’s contents are the CALL and RETURN instruc-
tions. Thus the stack is not used for other purposes in the manner of other architectures,
such as for local variables. The stack will never overflow, because the Dauug | 36 architecture
does not support recursion via the stack.

Here is a sample:

again: nop

call again ; infinite loop

Calls can be conditioned on the N, R, T, or Z flags. The -t and +t designators cause
the call to occur only if T is clear or set, respectively. If the call does not occur, execution
continues with the instruction that immediately follows. The -r and +r do the same using
the R flag.

The <, <=, ==, !=, >=, and > designators operate as if a cmp a b instruction immediately
preceded the call, with the call taken if a is less than, less than or equal, equal to, not
equal to, greater than or equal to, or greater than b, respectively. Equivalently, the call will
be taken only under the following corresponding N and Z flag states:

< N is set > N is clear
<= N or Z is set >= N is clear or Z is set
== Z is set != Z is clear

Note that N and Z are never simultaneously true.
It’s important to use == instead of merely = for the equality test, because call = subr

syntactically means to copy a register named subr to a register named call.
CALL may have important pipelining consequences. Stay tuned.



18 CHAPTER 3. INSTRUCTION REFERENCE

CLO Count leading ones

c = clo b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 macro only Z all result bits are zero

This builtin macro that expands to four CPU instructions. The number of leading one
bits in b is counted and written to c. N and Z are set as if the destination is a signed
register. T and R do not change.

CLZ Count leading zeros

c = clz b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 macro only Z all result bits are zero

This builtin macro that expands to four CPU instructions. The number of leading zero
bits in b is counted and written to c. N and Z are set as if the destination is a signed
register. T and R do not change.

CMP Compare

cmp a - b

Register signedness Flag set if

Left unsigned or signed N a < b

Right unsigned or signed Z a = b

4 opcodes total

This instruction subtracts the right operand from the left and sets the N and Z flags
according to the result. These flags will be correct for any combination of inputs; there is
no overrange situation that can occur. The result is discarded, and the T and R flags do
not change.



19

CRF Clear range flag

crf

No registers used Flag set if

1 opcode only T R was previously set
R never; flag is cleared

This is the only instruction that can clear the R (Range) flag. The R flag is copied to
T, and then R is cleared. wHere is a code example for how to save and restore the R flag:

unsigned save_R

; save R flag

crf ; previous R now in T

save_R = 0 ++ 0 ; add with carry saves T

; restore R flag

crf ; R is now clear

save_R = 0 - save_R ; possible overflow restores R

CTO Count trailing ones

c = cto b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 macro only Z all result bits are zero

This builtin macro that expands to four CPU instructions. The number of trailing one
bits in b is counted and written to c. N and Z are set as if the destination is a signed
register. T and R do not change.
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CTZ Count trailing zeros

c = ctz b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 macro only Z all result bits are zero

This builtin macro that expands to four CPU instructions. The number of trailing zero
bits in b is counted and written to c. N and Z are set as if the destination is a signed
register. T and R do not change.

CX Check and extend
cw = cx f

Register signedness Flag set if

f unsigned or signed N bit 35 of the result is set
cw ignored Z all result bits are zero

1 opcode only T f < 0 or f > 63
R T is set or R is already set

CX is used to prepare control words for several instructions, including MH and ML. This
instruction verifies that 0 ≤ f ≤ 63, and then replicates the least-significant tribble of f to
all of the others. The T and R flags are set if the range check fails, otherwise T is cleared
and R does not change.

DSL Double shift left
c = a dsl b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

This instruction adds the T flag with wrapping to a, and then shifts the sum left six
bits. The six bits shifted in at the right are the six leftmost bits of b. The result is written
to c. N and Z are set as if the destination is a signed register. T and R do not change.

This is a key instruction for long multiplication, providing in one CPU cycle what would
otherwise take five cycles. Section 5.3 has sample code. The N and Z flags are not used for
long multiplication, but are available in case someone identifies a use for them later.
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EO - Erase ones
c = eol b c = eor b
c = eoli b c = eori b

Register signedness Flag set if

All ignored N bit 35 of the result is set
4 macros Z all result bits are zero

EOL, EOLI, EOR and EORI are builtin macros that expand to two CPU instructions each.
EOL/EOR replaces any leading/trailing ones of b with zeros, and write the result to c.
EOLI/EORI is EOL/EOR with all output bits inverted. N and Z are set as if the destina-
tion is a signed register. T and R do not change. Section 5.3 presents another synopsis.

EZ - Erase zeros
c = ezl b c = ezr b
c = ezli b c = ezri b

Register signedness Flag set if

All ignored N bit 35 of the result is set
4 macros Z all result bits are zero

EZL, EZLI, EZR and EZRI are builtin macros that expand to two CPU instructions each.
EZL/EZR replaces any leading/trailing zeros of b with ones, and writes the result to c.
EZLI/EZRI is EZL/EZR with all output bits inverted. N and Z are set as if the destination is
a signed register. T and R do not change. Section 5.3 presents another synopsis.
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FABS Fast absolute value
c = fabs b

Register signedness Flag set if

b signed N never; flag is cleared
c unsigned or signed Z b = 0

1 opcode only T b < −(235) or b ≥ 235

R T is set or R is already set

This is a single-instruction implementation of absolute value. Dauug | 36 only supports
this operation if the six leftmost bits of the operand are either all ones or all zeros. This
instruction is fully range checked, so if the operand is not within the supported range, the
T and R flags will both be set, and N and Z will both be cleared.

If b is within the supported range, its absolute value is written to c. T and N are cleared,
and R is left unchanged. Z is set if b is zero, and cleared otherwise.

If −(230) ≤ b < 230 is too restrictive for the application, ABS offers a full-word “slow”
absolute value operation using two instructions.

FABS is not implemented for and will not assemble if b is unsigned.

FO - Find one
c = fol b c = for b
c = foli b c = fori b

Register signedness Flag set if

All ignored N bit 35 of the result is set
4 macros Z all result bits are zero

FOL, FOLI, FOR and FORI are builtin macros that expand to two CPU instructions each.
FOL/FOR scans b for the leftmost/rightmost one bit, sets all other bits to zero, and writes the
result to c. If b does not contain any ones, the output is all zeros. FOLI/FORI is FOL/FOR
with all output bits inverted. N and Z are set as if the destination is a signed register. T
and R do not change. Section 5.3 presents another synopsis.
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FZ - Find zero
c = fzl b c = fzr b
c = fzli b c = fzri b

Register signedness Flag set if

All ignored N bit 35 of the result is set
4 macros Z all result bits are zero

FZL, FZLI, FZR and FZRI are builtin macros that expand to two CPU instructions each.
FZL/FZR scans b for the leftmost/rightmost zero bit, sets that bit to one, sets all other bits
to zero, and writes the result to c. If b does not contain any zeros, the output is all zeros.
FZLI/FZRI is FZL/FZR with all output bits inverted. N and Z are set as if the destination is
a signed register. T and R do not change. Section 5.3 presents another synopsis.

GO - Grow one
c = gol b c = gor b

c = goli b c = gori b

Register signedness Flag set if

All ignored N bit 35 of the result is set
4 macros Z all result bits are zero

GOL, GOLI, GOR and GORI are builtin macros that expand to two CPU instructions each.
GOL/GOR replaces the leftmost/rightmost zero of b with one, and writes the result to c. If
b does not contain any zeros, the output is all ones. GOLI/GORI is GOL/GOR with all output
bits inverted. N and Z are set as if the destination is a signed register. T and R do not
change. Section 5.3 presents another synopsis.
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GZ - Grow zero
c = gzl b c = gzr b

c = gzli b c = gzri b

Register signedness Flag set if

All ignored N bit 35 of the result is set
4 macros Z all result bits are zero

GZL, GZLI, GZR and GZRI are builtin macros that expand to two CPU instructions each.
GZL/GZR replaces the leftmost/rightmost one of b with zero, and writes the result to c. If
b does not contain any ones, the output is all zeros. GZLI/GZRI is GZL/GZR with all output
bits inverted. N and Z are set as if the destination is a signed register. T and R do not
change. Section 5.3 presents another synopsis.

HALT Halt
halt

No registers used No flags changed

1 opcode only

As of October 2020, this is a vestigial instruction that causes the virtual machine to quit.
Instructions for yielding the CPU and possibly waiting for interrupts will be worked out in
the next few weeks. This entry will be removed or seriously altered.
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IPSR Instruction pointer
shift register

c = ipsr b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

This instruction sets c to the successor of b according to the Galois linear feedback shift
register corresponding to x13 +x10 +x4 +x+1. This is done by shifting b right one position,
and then clearing bit 12. If b was odd prior to the shift (that is, a one was shifted out),
then the quantity is XORed with 11011‘o, otherwise no XOR is done. The final result is
written to c. N and Z are set as if the destination is a signed register. T and R do not
change.

This LFSR is used by the operating system and programming tools to emulate the
behavior of the instruction pointer 13 least significant bits, which do not simply increment.
If b is initially 1, the next five terms generated are 4617, 6925, 8079, 7630, 3815. The
predecessor of 1 is 2, so 2 is the last output before the cycle loops every 8 191 terms. This
LFSR follows the paging scheme of the instruction pointer, in that the 23 most significant
bits do not change. Note that if the least 13 significant bits are all zero, c will be equal to
b, and the LFSR will not progress.
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JUMP Jump

jump dest jump < dest

jump -t dest jump <= dest

jump +t dest jump == dest

jump -r dest jump != dest

jump +r dest jump >= dest

jump > dest

No registers used No flags changed

11 opcodes total

The JUMP instructions transfer control to the instruction at label dest. Nearly always,
this label should be within the present scope. Here is a sample:

again: nop

jump again ; infinite loop

Jumps can be conditioned on the N, R, T, or Z flags. The -t and +t designators cause
the jump to occur only if T is clear or set, respectively. If the jump does not occur, execution
continues with the instruction that immediately follows. The -r and +r do the same using
the R flag.

The <, <=, ==, !=, >=, and > designators operate as if a cmp a b instruction immediately
preceded the jump, with the jump taken if a is less than, less than or equal, equal to, not
equal to, greater than or equal to, or greater than b, respectively. Equivalently, the jump
will be taken only under the following corresponding N and Z flag states:

< N is set > N is clear
<= N or Z is set >= N is clear or Z is set
== Z is set != Z is clear

Note that N and Z are never simultaneously true.
It’s important to use == instead of merely = for the equality test, because jump = dest

syntactically means to copy a register named dest to a register named jump.
JUMP may have important pipelining consequences. Stay tuned.
Here is a simple double loop with 6300 inner iterations:

unsigned i j

i = 0

j = 0

outer: cmp i 90

jump >= outer_done

inner: cmp j 70

jump >= inner_done

say "i = " i " and j = " j

j = j + 1

jump inner

inner_done: i = i + 1

jump outer

outer_done: nop
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LANR Left and not right

c = a & !b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

LANR sets the destination to the bitwise AND of the left operand with the bitwise com-
plement of the right operand. N and Z are set as if the destination is a signed register. T
and R do not change.

LAS Logical assignment

<wrap> c = b

<wrap> c = <left> a

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

LAS copies the operand to the destination without range checking. N and Z are set as if
the destination is a signed register. T and R do not change.

By default, the operand is taken from the right copy of the register file. To force use of
the left copy, use the <left> cast as shown. See Section 5.3.
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LFSR Linear feedback
shift register

c = lfsr b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

This instruction sets c to the successor of b according to the Galois linear feedback shift
register corresponding to x36 +x31 +x13 +x7 +x6 +x5 +x3 +x2 +1. This is done by shifting
b right one position, with bit 35 filled with zero. If b was odd prior to the shift (that is, a
one was shifted out), then the shifted amount is XORed with 410000 010166‘o, otherwise
no XOR is done. The final result is written to c. N and Z are set as if the destination is a
signed register. T and R do not change.

LFSRs are useful, because they can key fast pseudorandom number generators (PRNGs)
implemented with MIX. See that instruction for sample code. The period of this LFSR is
236− 1 for any nonzero initial value. The period of the resulting PRNG is guaranteed to be
at least 236 − 1, but has not been adequately validated for longer lengths.

The polynomial chosen for this LFSR can also be used, with powers raised by 36, 72, or
108, as the most significant word of 72-bit, 108-bit, and 144-bit LFSRs. This turns out to
be the only polynomial with eight taps or fewer which has this property. Such LFSRs are
useful for producing PRNGs with longer guaranteed periods. See also XPOLY.

LO - Light ones

c = lol b c = lor b
c = loli b c = lori b

Register signedness Flag set if

All ignored N bit 35 of the result is set
2 opcodes, 2 macros Z all result bits are zero

LOL/LOR ignores the leading/trailing ones of b, replaces all other bits with zeros, and
writes the result to c. LOLI/LORI is LOL/LOR with all output bits inverted, implmemented
as a two-instruction macro. N and Z are set as if the destination is a signed register. T and
R do not change. Section 5.3 presents another synopsis.



29

LONR Left or not right

c = a | !b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

LONR sets the destination to the bitwise OR of the left operand with the bitwise comple-
ment of the right operand. N and Z are set as if the destination is a signed register. T and
R do not change.

LSL Logical shift left

c = a lsl cw

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

This instruction shifts the bits of register a left. Bits shifted out are discarded, and bits
shifted in are zeros. The number of positions to shift may not be negative, and must be
copied into every tribble of control word cw. The PSL instruction can convert any unsigned
value into a suitable control word. N and Z are set as if the destination is a signed register.
T and R are not changed by LSL or any preceding PSL.

LSR Logical shift right

c = a lsr cw

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

This instruction shifts the bits of register a right. Bits shifted out are discarded, and
bits shifted in are zeros. The number of positions to shift may not be negative, is specified
from the perspective of a left rotation (sic), and must be copied into every tribble of control
word cw. The PSR instruction can convert any unsigned value into a suitable control word.
N and Z are set as if the destination is a signed register. T and R are not changed by LSR

or any preceding PSR.
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LZ - Light zeros

c = lzl b c = lzr b
c = lzli b c = lzri b

Register signedness Flag set if

All ignored N bit 35 of the result is set
2 opcodes, 2 macros Z all result bits are zero

LZL/LZR replaces the leading/trailing zeros of b with ones, replaces all other bits with
zeros, and writes the result to c. LZLI/LZRI is LZL/LZR with all output bits inverted,
implmemented as a two-instruction macro. N and Z are set as if the destination is a signed
register. T and R do not change. Section 5.3 presents another synopsis.

MAX Maximum
c = a max b

Register signedness Flag set if

Left unsigned or signed N maximum < 0
Right unsigned or signed Z maximum = 0
Dest. unsigned or signed T c cannot fit maximum

8 opcodes total R T is set or R is already set

The maximum of the two operands is determined, and the N and Z flags are set accord-
ingly. The 36 least significant bits of the maximum are stored in the destination register,
which may be signed or unsigned. Flags T and R are set if the full maximum does not fit,
otherwise T is cleared and R is left unchanged.
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MH Multiply high

c = a mh b

Register signedness Flag set if

Left ignored N never; flag is cleared
Right ignored Z c = 0
Dest. ignored T c mod 64 6= 0

1 opcode only R T is set or R is already set

This is a key instruction for unsigned “short” multiplication where one of the factors fits
into six bits, and the product fits into 36 bits. The smaller of the factors must be copied
into all of the tribbles via CX or an assembler constant. MH multiplies the tribbles of a and
b pairwise, but the six 12-bit results cannot fit the 6-bit spaces afforded by the tribbles
of c. Instead, MH retains only the six most significant bits of each 12-bit result. ML is the
complementary instruction that retains the six least sigificant bits of each.

To meaningfully add the output of MH and ML, their place values must be aligned con-
sistently, meaning that MH needs a 6-position left shift, and that the result can spill to as
many as 42 bits (which will not fit in a 36-bit register) as a result of that shift. The solution
is that instead of shift, MH rotates its result six bits left. If the six bits rotated into the
rightmost places are not all zeros, the T and R flags are set because the eventual product
will not fit in 36 bits. Otherwise T is cleared, R is left unchanged, and the output of MH can
be directly added to ML to obtain the 36-bit product. Z will be set if the output of MH is
all zeros. N is always cleared.

Here is an unsigned short multiplication example with full range checking, and an always-
accurate Z flag at the end whether or not overflow occurs. Four cycles are needed. The CX

can be optimized out when multiplying by a small constant.

unsigned big small t result ; will multiply big * small

; ...

t = cx small ; copy small into all tribbles

result = big mh t ; high bits of product

t = big ml t ; low bits of product

result = result + t ; result is now big * small
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MHNS Multiply high no shift

c = a mhns b

Register signedness Flag set if

All ignored N never; flag is cleared
1 opcode only Z c = 0

This is a key instruction for unsigned long multiplication, where two 36-bit factors are
multiplied as 6-bit tribbles and eventually sum to produce a 72-bit result. MHNS multiplies
the tribbles of a and b pairwise, but the six 12-bit results cannot fit the 6-bit spaces afforded
by the tribbles of c. Instead, MHNS retains only the six most significant bits of each result.
The tribbles are output in their original positions, instead of being rotated left as with MH.
The Z flag is set if the outcome of MHNS is all zeros, and cleared otherwise. N is always
cleared, and T and R do not change. See Section 5.3 for sample code.

MIN Minimum
c = a min b

Register signedness Flag set if

Left unsigned or signed N minimum < 0
Right unsigned or signed Z minimum = 0
Dest. unsigned or signed T c cannot fit minimum

8 opcodes total R T is set or R is already set

The minimum of the two operands is determined, and the N and Z flags are set accord-
ingly. The 36 least significant bits of the minimum are stored in the destination register,
which may be signed or unsigned. Flags T and R are set if the full minimum does not fit,
otherwise T is cleared and R is left unchanged.
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MIRD Mirrored decrement
c = mird b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

This instruction subtracts one from b mod 236 as if b’s place values are in reverse order.

For example, if b = 00000 00000 000011 110101 000011 011110‘2

then mird b = 11111 11111 111101 110101 000011 011110‘2 .

Because no range checking is done, the T flag is cleared and R is left unchanged. N is
not “mirrored,” but is a copy of the leftmost output bit. In the example above, N is set. Z
is set if all output bits are set, and cleared otherwise.

MIRI Mirrored increment
c = miri b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

This instruction adds one to b mod 236 as if b’s place values are in reverse order.

For example, if b = 11111 11111 111101 110101 000011 011111‘2

then mird b = 00000 00000 000011 110101 000011 011111‘2 .

Because no range checking is done, the T flag is cleared and R is left unchanged. N is
not “mirrored,” but is a copy of the leftmost output bit. In the example above, N is cleared.
Z is set if all output bits are set, and cleared otherwise.
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MIX Mix
c(iphertext) = p(laintext) mix k(ey)

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

MIX passes 36-bit word p through an invertible substitution-permutation network keyed
by 36-bit word k. The inverse operation of MIX is XIM. Testing shows that on average,
one-bit changes to the value of p/k cause c to change by 15.37/16.47 bits. An ideal mixing
function would cause half of the bits of c—half is 18 bits—to change. N and Z are set as
if the destination is a signed register. T and R do not change. Here are sample uses for
hashing an object, pseudorandom numbers, and cryptography:

; Compute hash of 4-word object

unsigned hash word.1 word.2 word.3 word.4

; ...

hash = o3THvL‘t mix word.1 ; use 36-bit const as initial value

hash = hash mix word.2 ; use progressive words of object

hash = hash mix word.3

hash = hash mix word.4

; Pseudorandom number generator

unsigned state1 state2 output

state1 = zRN6x1‘t ; 36-bit seed #1

state2 = mPC$TB‘t ; 36-bit seed #2

; ...

get_next_rand: ; period of PRNG >= (2**36) - 1

state2 = lfsr state2 ; rekey in just one instruction

state1 = state1 mix state2 ; new value

output = state1 ; keep caller from changing state

return

; Toy example cipher - insecure!

unsigned in out key.1 key.2

key.1 = EtdvIv‘t ; bits 0-35 of key

key.2 = yKoM2j‘t ; bits 36-71 of key

; ...

encrypt:

out = in mix key.1 ; ECB mode with 36-bit block size

out = out mix key.2 ; two rounds total

return

;

decrypt:

out = in xim key.2 ; "in" here is "out" from encrypt

out = out xim key.1 ; "unwrap" key in reverse order

return
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ML Multiply low

c = a ml b

Register signedness Flag set if

All ignored N never; flag is cleared
1 opcode only Z c = 0

This is a key instruction for unsigned “short” multiplication where one of the factors fits
into six bits, and the product fits into 36 bits. The smaller of the factors must be copied
into all of the tribbles via CX or an assembler constant. ML multiplies the tribbles of a and
b pairwise, but the six 12-bit results cannot fit the 6-bit spaces afforded by the tribbles of
c. Instead, ML retains only the six least significant bits of each 12-bit result. The Z flag is
set if the outcome of ML is all zeros, and cleared otherwise. N is always cleared, and T and
R do not change. See MH for more information and sample code.

NAND NAND
c = a !& b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

NAND sets the destination to the bitwise NAND of its operands. N and Z are set as if the
destination is a signed register. T and R do not change.
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NAS Numeric assignment

c = b
c = <left> a

Register signedness Flag set if

Left unsigned or signed N operand < 0
Right unsigned or signed Z operand = 0
Dest. unsigned or signed T dest. cannot fit operand

8 variants total R T is set or R is already set

NAS copies the 36 operand bits to the 36 destination bits exactly, and then confirms that
a change in signedness has not changed the resulting quantity. N and Z are set to indicate
if the operand is negative or zero respectively. T and R are set if the operand does not fit
in the destination. Otherwise, T is cleared, and R does not change.

By default, the operand is taken from the right copy of the register file. To force use of
the left copy, use the <left> cast as shown. See Section 5.3.

NOP No operation
nop

No registers used No flags changed

1 opcode only

This instruction sits out the current CPU cycle without writing to any register or chang-
ing any flags. If the control transfer instructions CALL, JUMP, and RETURN require flushing
the instruction pipeline, NOP is a simple and fail-safe option to place immediately folowing
these instructions.

Because the hardware ignores the 27 operand bits of NOP, the Dauug | 36 emulation
software uses NOP to encode diagnostic instructions such as SAY and SAYS that have no
hardware support. This allows the programs assembled for the virtual machine to run
unmodified on physical hardware.
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NOR NOR
c = a !| b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

NOR sets the destination to the bitwise NOR of its operands. N and Z are set as if the
destination is a signed register. T and R do not change.

NOT NOT
c = !b
c = <left> !a

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

NOT sets the destination to the bitwise NOT of the operand. N and Z are set as if the
destination is a signed register. T and R do not change.

By default, the operand is taken from the right copy of the register file. To force use of
the left copy, use the <left> cast as shown. See Section 5.3.
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NUDGE Nudge

c = a nudge b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

NUDGE replaces the rightmost 0–31 bits of a with the same number of bits from b, and
writes the result to c. The number of bits replaced is the number that appear to the right
of the leftmost one in b. In essence, the first one bit as b is scanned from left to right is the
start bit , with all bits following that bit replacing the bits in the corresponding positions of
a. For example, 1101 0110‘b nudge 0010 1101‘b would be 1100 1101‘b.

NUDGE is useful for altering the modulus of a number relative to some power of two.
For example if ba ÷ 256 = 12 000c and we want to force a mod 256 = 197 = 1100 0101‘b

without knowing it’s current value and without changing ba ÷ 256c, we would set
c = a nudge 1 1100 0101‘b.

NUDGE is also useful for efficiently converting a pointer to a member of a power-of-two-
sized structure to a pointer to any other member of the same structure, without needing to
know which member was indicated by the original pointer.

OR OR
c = a | b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

OR sets the destination to the bitwise OR of its operands. N and Z are set as if the
destination is a signed register. T and R do not change.



39

PARTY Parity

c = party b

Register signedness Flag set if

All ignored N never; flag is cleared
1 opcode only Z parity of b is even

This instruction determines whether the number of ones in b is odd, and if so sets c to
1 and clears the Z flag. Otherwise, c is zeroed and Z is set. The N and T flags are cleared,
and R is left unchanged.

PAT Permute across
tribbles

c = a pat b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

This instruction transposes a per Section 1.1. The tribbles of a> then undergo permuta-
tion operations selected by the corresponding tribbles of b. The permuted outcome is then
transposed back and written to c. Due to the 6-bit encoding limit of 64 operations, only
64 of the possible 6 ! = 720 permutations of six bits can be supported by this instruction.
These 64 permutations appear in Table 3.1 and follow the notation of Section 2.9. All 720
permutations can be reached via 2-instruction compositions of these 64.

In essence, PAT does permutations between tribbles, where tribble i of b specifies a
permutation among the ith bits of each tribble of a. PIT and PAT can be used in combination
to produce any permutation of 36 bits in five instructions or fewer. As computing operands
for these instructions manually would be tedious and error-prone, the Dauug | 36 assembler
provides this service automatically via the PERM macro.
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PAIT Permute across and
inside tribbles

c = a pait b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

In unusual circumstances where PIT is applied to the result of PAT using the same
operands, the Dauug | 36 is able to roll these two operations into this single instruction. For
instance, c = a pait 131313131313‘o mirrors the bits of a 36-bit word (see Table 3.1).

PIT Permute inside tribbles
c = a pit b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

Each tribble of a undergoes a permutation operation selected by the corresponding
tribble of b, with the result written to c. Due to the 6-bit encoding limit of 64 operations,
only 64 of the possible 6 ! = 720 permutations of six bits can be supported by this instruction.
These 64 permutations appear in Table 3.1 and follow the notation of Section 2.9. All 720
permutations can be reached via 2-instruction compositions of these 64.
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Table 3.1: Tribble permutation operations

Oct. Perm. Derivation Oct. Perm. Derivation

00 543210 identity 40 425130 count out of circle by 3s
01 054321 rotated identity 41 530241 count out of circle by 3s
02 105432 rotated identity 42 041352 count out of circle by 3s
03 210543 rotated identity 43 152403 count out of circle by 3s
04 321054 rotated identity 44 203514 count out of circle by 3s
05 432105 rotated identity 45 314025 count out of circle by 3s
06 501234 reflected 05 46 421530 count out by 3s backward
07 450123 reflected 04 47 352041 count out by 3s backward
10 345012 reflected 03 50 403152 count out by 3s backward
11 234501 reflected 02 51 514203 count out by 3s backward
12 123450 reflected 01 52 025314 count out by 3s backward
13 012345 reflected identity 53 130425 count out by 3s backward
14 543201 pair swap 54 453201 2-pair rotation
15 543012 pair swap 55 240513 2-pair rotation
16 540213 pair swap 56 013245 2-pair rotation
17 503214 pair swap 57 042315 2-pair rotation
20 043215 pair swap 60 534120 3-pair rotation
21 543120 pair swap 61 521430 3-pair rotation
22 541230 pair swap 62 512340 3-pair rotation
23 513240 pair swap 63 452301 3-pair rotation
24 143250 pair swap 64 315042 3-pair rotation
25 542310 pair swap 65 102354 3-pair rotation
26 523410 pair swap 66 034125 3-pair rotation
27 243510 pair swap 67 021435 3-pair rotation
30 534210 pair swap 70 435021 symmetric half rotation
31 345210 pair swap 71 354102 symmetric half rotation
32 453210 pair swap 72 215430 algorithmically selected
33 103254 movement in pairs 73 124530 algorithmically selected
34 325410 movement in pairs 74 342501 algorithmically selected
35 541032 movement in pairs 75 245031 algorithmically selected
36 531420 2x3 and 3x2 transposes 76 013452 algorithmically selected
37 524130 2x3 and 3x2 transposes 77 234015 algorithmically selected

POPC Popcount

c = popc b

Register signedness Flag set if

All ignored N never; flag is cleared
Z b = 0

POPC is a builtin assembler macro that expands to three esoteric CPU instructions that
aren’t in this manual. At the conclusion of the sequence, c is equal to the number of one bits
in b. This operation is sometimes called population count , popcount , or Hamming weight
in other literature. N and Z are set as if the destination is a signed register. Because the
result only uses the six rightmost bits, N will not be set. T and R do not change.

A third register is required for intermediate results during the computation; this register
is provided transparently by the assembler and is shared with other builtin macros. Register
b is never overwritten by this macro.
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PRL Prepare to rotate left

cw = prl amt

Register signedness Flag set if

amt unsigned or signed T amt < 0 or amt > 63
cw ignored R T is set or R is already set

1 opcode only

PRL prepares a control word for the ROT instruction by copying the least significant tribble
into all others. For instance, if amt = 5, then cw = 050505050505‘8. Left rotations of 0
through 63 bits are supported. Rotating 36–63 bits is equivalent to rotating 0–27 bits. If
amt is outside the supported range, the T and R flags are set. Otherwise, T is cleared and
R does not change.

PRL is the same instruction as CX, but PRL is preferred for legibility.

PRR Prepare to rotate right
cw = prr amt

Register signedness Flag set if

amt unsigned or signed T amt < 0 or amt > 63
cw ignored R T is set or R is already set

1 opcode only

This instruction prepares a control word for the ROT instruction by first altering the least
significant tribble to be from the perspective of a left rotation, then copying that tribble
to all others. For instance, if amt = 29, then cw = 070707070707‘8. Right rotations of 0
through 63 bits are supported. Rotating 36–63 bits is equivalent to rotating 0–27 bits. If
amt is outside the supported range, the T and R flags are set. Otherwise, T is cleared and
R does not change.
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PSL Prepare to shift left

cw = psl amt

Register signedness Flag set if

amt unsigned N bit 35 of the result is set
cw ignored Z all result bits are zero

1 opcode only

This instruction prepares a control word for an ASL or LSL instruction by copying the
number of positions to shift into all tribbles. For instance, if amt = 4, then
cw = 040404040404‘8. Left shifts of any non-negative number of positions are supported.
Shifts of more than 35 bits are all equivalent to 36-bit shifts and set cw = 444444444444‘8
(each tribble is 36). N and Z are set as if cw is a signed register. T and R do not change.

PSR Prepare to shift right
cw = psr amt

Register signedness Flag set if

amt unsigned N bit 35 of the result is set
cw ignored Z all result bits are zero

1 opcode only

This instruction prepares a control word for an ASR or LSR instruction copying the number
of positions to shift into all tribbles. This amount to shift is specified from the perspective
of a left rotation (sic). For instance, if amt = 34, then cw = 020202020202‘8. Right shifts
of any non-negative number of positions are supported. Shifts of more than 35 bits are all
equivalent to 36-bit shifts and set cw = 444444444444‘8 (each tribble is 36). N and Z are
set as if cw is a signed register. T and R do not change.

RANL Right and not left

c = !a & b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

RANL sets the destination to the bitwise AND of the right operand with the bitwise
complement of the left operand. N and Z are set as if the destination is a signed register.
T and R do not change.
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RONL Right or not left

c = !a | b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

RONL sets the destination to the bitwise OR of the right operand with the bitwise com-
plement of the left operand. N and Z are set as if the destination is a signed register. T and
R do not change.

ROT Rotate
c = a rot cw

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

This instruction rotates the bits of a. The number of positions to rotate must be specified
from the perspective of a left rotation, and copied into every tribble of control word cw. The
PRL and PRR instructions offer a range-checked mechanism to set up the control word for
left and right rotations. N and Z are set as if the destination is a signed register. ROT will
not change T or R, although a preceding PRL and PRR may.
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RS Reverse subtract
c = a ~- b

Register signedness Flag set if

Left unsigned or signed N b− a < 0
Right unsigned or signed Z b− a = 0
Dest. unsigned or signed T c cannot fit b− a

8 opcodes total R T is set or R is already set

This is the instruction for reverse subtraction of 36-bit numbers. It does not have a
borrow input or borrow output. It is fully range checked, so the T and R flags will indicate
when the difference does not fit in 36 bits.

The 36-bit unsigned and/or signed operand registers are extended into 38-bit signed
quantities. The left operand is subtracted from the right to produce a 38-bit signed difference
that will not overflow. The N and Z flags are set based on the original 38-bit difference. The
36 least significant bits of the difference are stored in the destination register, which may
be signed or unsigned. Flags T and R are set if the full difference does not fit, otherwise T
is cleared and R is left unchanged.

RSB Reverse subtract
with borrow

c = a ~-- b

Register signedness Flag set if

Left unsigned or signed N b− a− T < 0
Right unsigned or signed Z b− a− T = 0
Dest. unsigned or signed T c cannot fit b− a− T

8 opcodes total R T is set or R is already set

This is the final instruction for multiple-precision reverse subtraction of integers larger
than 36 bits. It uses the T flag as a borrow input, but has no borrow output. It is fully
range checked, so the T and R flags will indicate when the multiple-precision difference does
not fit.

This instruction is preceded by RSW for 72-bit reverse subtraction, or by RSWB for 108-bit
and larger reverse subtraction. It is never preceded by RS, because RS conflicts for range
checking.

The 36-bit unsigned and/or signed operand registers are extended into 38-bit signed
quantities. The T flag and left operand are subtracted from the right to produce a 38-bit
signed difference that will not overflow. The N and Z flags are set based on the original
38-bit difference. The 36 least significant bits of the difference are stored in the destination
register, which may be signed or unsigned. Flags T and R are set if the full difference does
not fit, otherwise T is cleared and R is left unchanged.



46 CHAPTER 3. INSTRUCTION REFERENCE

RSW Reverse subtract
and wrap

<wrap> c = a ~- b

Register signedness Flag set if

Left ignored N b− a < 0
Right ignored Z b− a = 0
Dest. ignored T b− a < 0

1 opcode only R flag does not change

This is the first instruction for multiple-precision reverse subtraction of integers larger
than 36 bits. It has no borrow input, and uses the T flag as a borrow output. It does not
require range checking and therefore has no effect on the R flag.

This instruction is followed by RSB for 72-bit reverse subtraction. For 108-bit and larger
integers, it is followed by RSWB.

The three registers are treated as unsigned without regard to how they are declared. The
T flag and left operand are subtracted from the right, and the 36-bit difference is stored
in the destination. Flag Z will be set if the left and right operands are equal, and cleared
otherwise. Flags N and T are set if a borrow is generated, and cleared otherwise. Flag R
does not change.
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RSWB Reverse subtract and
wrap with borrow

<wrap> c = a ~-- b

Register signedness Flag set if

Left ignored N b− a− T < 0
Right ignored Z b− a− T = 0
Dest. ignored T b− a− T < 0

1 opcode only R flag does not change

This is the intermediate instruction for multiple-precision reverse subtraction of integers
larger than 72 bits. It uses the T flag as a borrow input and borrow output. It does not
require range checking and therefore has no effect on the R flag.

In 108-bit reverse subtraction, this instruction is preceded by RSW and followed by RSB.
For 144-bit and larger integers, it is preceded by RSW or RSWB and followed by RSWB or RSB

depending on its position.
The three registers are treated as unsigned without regard to how they are declared. The

T flag and left operand are subtracted from the right, and the 36-bit difference is stored in
the destination. Flag Z will be set if the 36-bit difference is zero and no borrow is generated.
Flags N and T are set if a borrow is generated, and cleared otherwise. Flag R does not
change.

RTGL Rotate T going left

c = rtgl b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

T bit 35 of b is set
R R is already set

This instruction rotates b left one position, fills bit 0 with the existing T flag, and writes
the result to c. The bit rotated out from bit 35 is moved to the T flag. R is left unchanged.
N and Z are set as if the destination is a signed register.
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RTGR Rotate T going right

c = rtgr b

Register signedness Flag set if

All ignored N incoming T flag is set
1 opcode only Z all result bits are zero

T bit 0 of b is set
R R is already set

This instruction rotates b right one position, fills bit 35 with the incoming T flag, and
writes the result to c. The bit shifted out from bit 0 is copied to the T flag. R is left
unchanged. N and Z are set as if the destination is a signed register.

S Subtract
c = a - b

Register signedness Flag set if

Left unsigned or signed N a− b < 0
Right unsigned or signed Z a− b = 0
Dest. unsigned or signed T c cannot fit a− b

8 opcodes total R T is set or R is already set

This is the instruction for ordinary subtraction of 36-bit numbers. It does not have a
borrow input or borrow output. It is fully range checked, so the T and R flags will indicate
when the difference does not fit in 36 bits.

The 36-bit unsigned and/or signed operand registers are extended into 38-bit signed
quantities. The right operand is subtracted from the left to produce a 38-bit signed difference
that will not overflow. The N and Z flags are set based on the original 38-bit difference. The
36 least significant bits of the difference are stored in the destination register, which may
be signed or unsigned. Flags T and R are set if the full difference does not fit, otherwise T
is cleared and R is left unchanged.
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SB Subtract with borrow
c = a -- b

Register signedness Flag set if

Left unsigned or signed N a− b− T < 0
Right unsigned or signed Z a− b− T = 0
Dest. unsigned or signed T c cannot fit a− b− T

8 opcodes total R T is set or R is already set

This is the final instruction for multiple-precision subtraction of integers larger than 36
bits. It uses the T flag as a borrow input, but has no borrow output. It is fully range checked,
so the T and R flags will indicate when the multiple-precision difference does not fit.

This instruction is preceded by SW for 72-bit subtraction, or by SWB for 108-bit and larger
subtraction. It is never preceded by S, because S conflicts for range checking.

The 36-bit unsigned and/or signed operand registers are extended into 38-bit signed
quantities. The T flag and right operand are subtracted from the left to produce a 38-bit
signed difference that will not overflow. The N and Z flags are set based on the original
38-bit difference. The 36 least significant bits of the difference are stored in the destination
register, which may be signed or unsigned. Flags T and R are set if the full difference does
not fit, otherwise T is cleared and R is left unchanged.

STGL Shift T going left

c = stgl b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

T bit 35 of b is set
R R is already set

This instruction shifts b left one position, fills bit 0 with a zero, and writes the result to
c. The bit shifted out from bit 35 is copied to the T flag. R is left unchanged. N and Z are
set as if the destination is a signed register.
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STGR Shift T going right

c = stgr b

Register signedness Flag set if

All ignored N never; flag is cleared
1 opcode only Z all result bits are zero

T bit 0 of b is set
R R is already set

This instruction shifts b right one position, fills bit 35 with a zero, and writes the result
to c. The bit shifted out from bit 0 is copied to the T flag. R is left unchanged, and N is
cleared. Z is set if the result is all zeros, and cleared otherwise.

SW Subtract and wrap

<wrap> c = a - b

Register signedness Flag set if

Left ignored N a− b < 0
Right ignored Z a− b = 0
Dest. ignored T a− b < 0

1 opcode only R flag does not change

This is the first instruction for multiple-precision subtraction of integers larger than 36
bits. It has no borrow input, and uses the T flag as a borrow output. It does not require
range checking and therefore has no effect on the R flag.

This instruction is followed by SB for 72-bit subtraction. For 108-bit and larger integers,
it is followed by SWB.

The three registers are treated as unsigned without regard to how they are declared. The
T flag and right operand are subtracted from the left, and the 36-bit difference is stored
in the destination. Flag Z will be set if the left and right operands are equal, and cleared
otherwise. Flags N and T are set if a borrow is generated, and cleared otherwise. Flag R
does not change.
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SWB Subtract and wrap
with borrow

<wrap> c = a -- b

Register signedness Flag set if

Left ignored N a− b− T < 0
Right ignored Z a− b− T = 0
Dest. ignored T a− b− T < 0

1 opcode only R flag does not change

This is the intermediate instruction for multiple-precision subtraction of integers larger
than 72 bits. It uses the T flag as a borrow input and borrow output. It does not require
range checking and therefore has no effect on the R flag.

In 108-bit subtraction, this instruction is preceded by SW and followed by SB. For 144-bit
and larger integers, it is preceded by SW or SWB and followed by SWB or SB depending on its
position.

The three registers are treated as unsigned without regard to how they are declared. The
T flag and right operand are subtracted from the left, and the 36-bit difference is stored in
the destination. Flag Z will be set if the 36-bit difference is zero and no borrow is generated.
Flags N and T are set if a borrow is generated, and cleared otherwise. Flag R does not
change.

SWIZ Swizzle
c = a swiz cw

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

This instruction replaces tribbles of a> using the tribbles of cw as swizzle function
identifiers. These 64 swizzle functions appear in Table 3.2. See TXOR for a synopsis of the
transposing operation from a to a>. N and Z are set as if the destination is a signed register.
T and R do not change, because no range checking is done.

A routine use for SWIZ is to select a tribble from a register and replicate it to all of
the other tribbles. For example, if a = 01 34 67 90 23 56 ‘8 and cw = 02 02 02 02 02 02 ‘8, the
result will be 90 90 90 90 90 90 ‘8.
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Table 3.2: Swizzle operations

Slot Operation

0 copy from tribble 0
1 copy from tribble 1
2 copy from tribble 2
3 copy from tribble 3
4 copy from tribble 4
5 copy from tribble 5

6–63 reserved

TXOR Transposing XOR

c = a txor b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

The bits of b are transposed to compute b> by relocating the ith bit of tribble j to the
j th bit of tribble i for all i, j ∈ {0...5}. See also Section 1.1. The bitwise exclusive-OR of a
with b> is then written to destination c. N and Z are set as if the destination is a signed
register. T and R do not change.

TXOR can be used to obtain the transpose of a register. To do this, use zero for a.

XIM Undo mix
p(laintext) = c(iphertext) xim k(ey)

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

XIM is the inverse operation of MIX. XIM passes 36-bit word c through an inverted
substitution-permutation network keyed by 36-bit word k. N and Z are set as if the desti-
nation is a signed register. T and R do not change. See MIX for more specifics.

Testing shows that on average, one-bit changes to the value of c/k cause p to change
by 15.36/16.48 bits. Note these measurements are distinguishable from those of MIX, and
could be indicative of S-box imbalances.
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XNOR XNOR
c = a !^ b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

XNOR sets the destination to the bitwise XNOR of its operands (the opposite of XOR).
N and Z are set as if the destination is a signed register. T and R do not change.

XOR XOR
c = a ^ b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

XOR sets the destination to the bitwise XOR of its operands. N and Z are set as if the
destination is a signed register. T and R do not change.
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XPOLY XOR polynomial
if T is set

c = xpoly b

Register signedness Flag set if

All ignored N bit 35 of the result is set
1 opcode only Z all result bits are zero

If the T flag is set, this instruction XORs b with 410000 010166‘o and writes the result
to c. Otherwise b is copied directly to c. N and Z are set as if the destination is a signed
register. T and R do not change.

XPOLY is used to implement 72-bit, 108-bit, and 144-bit Galois linear feedback shift
registers with periods of 272 − 1, 2108 − 1, and 2144 − 1 respectively. Because it would take
the Dauug | 36 architecture at least millions of years to cycle through the 72-bit sequence,
applications that require 108 or 144 bits would be rare. But 36-bit LFSRs implemented
by the LFSR instruction can restart their cycles in less than a day, so 72-bit LFSRs would
find application. The XPOLY polynomial is not suitable for (and may produce very short
sequences if used for) LFSRs of more than 144 bits.

Here are sample implementations for all four LFSR sizes. The word registers must be
initialized before the sequence starts, with at least one register in each case not zero. Note
from Section 2.5 that u. is a supported shorthand meaning unsigned. When an LFSR is
used to key MIX for a pseudorandom number generator, any single register from the LFSR
is adequate.1

; 36-bit LFSR ; 72-bit LFSR ; 108-bit LFSR ; 144-bit LFSR

u. w0 u. w1 w0 u. w2 w1 w0 u. w3 w2 w1 w0

; ; ; ;

w0 = lfsr w0 w1 = stgr w1 w2 = stgr w2 w3 = stgr w3

w0 = rtgr w0 w1 = rtgr w1 w2 = rtgr w2

w1 = xpoly w1 w0 = rtgr w0 w1 = rtgr w1

w3 = xpoly w3 w0 = rtgr w0

w3 = xpoly w3

1Verify this with Dieharder before publication. There are eight untested cases.
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Glossary

• Define “primary storage.”

• Define “signedness.”

• Define “tribble.”

• Define “overflow” (can be very postive OR very negative).

• Explain ”ordinary assignment.”

• opcode

• operation

• macro, Kibyte, Kiword, Mibyte, Miword, virtual machine
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Chapter 5

Unfinished business

5.1 To use later

Table 5.1: Operators and operator-like symbols

5.2 Bugs to fix and quirks to document

• ASCII nulls in source cause undefined results.

• Inline comments break tokens.

• Add hierarchy: when to use A, AC, AW, AWC

• Need asm test of multi-precision add, subtract w/ all signednesses

• Test corner behavior of Z: Add/subtract with wrap and borrow

• Explain how instructions are implemented; e.g., NAS is actually A.

• Explain why no rotations > 63 and why no negative rotations.

• Jump destinations and calls are hard-coded. For a reason.

• The assembler does not implement the underscore grouping symbol for numbers.

5.3 Sections to write

• SAY is for VM diagnostics and can output numbers in base 10, strings, and characters.

u. x letter

x = 12345

letter = 65

say "The value of x is " x ", the numeral 10 is " 10 ", and " (

) the first letter of the alphabet is " #letter "."

sayn "There is no line break right here, "

say "but there is one at the end of the line."
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• KB gets an ASCII character from stdin. It’s not a nonary function, but a keyword in
the first token position.

• EMIT for forcible assembly.

• NOW delineates scoped sections. It’s not perfectly convenient in terms of positional
parameters or brevity of notation, but it’s rather optimal for execution speed.

now shortmul:

unsigned big small t result

t = cx small

result = big mh t

t = big ml t

result = result + t

return

now main:

shortmul:big = 123456

shortmul:small = 7

call shortmul

say "123456 * 7 = " shortmul:result

now alternative:

; : without prefix uses last lexical scope

shortmul:big = 123456

:small = 7

call

say "123456 * 7 = " :result

• High-level syntax: keywords, instructions, case sensitivity, scope, name of main scope,
etc.

• Keyword reference

• labels

• tokenization

• Floating point formats. A binary36 is defined, single precision, base 2, 27 sig bits,
8.13 decimal digits, 9 exponent bits, 76.76 decimal E max, exponent bias 255, E min
-254, E max 255, but no implementation.

• IF that works like CMP and uses T as a “true” flag. if (a = b and c = d) or (e =

f and g = h) can have the result in T in four (!) instructions. If we let the assembler
swap operands sometimes, we can do this in 20 opcodes, and allow a 3-deep stack via
T, N, and Z (with crazy abuses). The opcodees are {< <= == !=} × {plain, and, or,
and-or, or-and}. It doesn’t short-circuit, but it screams in the pipeline.

We could go pretty crazy with implementation, using De Morgan’s theorem to get
NOT, NAND, NOR, LANR, LONR, RANL, RONL going. XOR and XNOR come at
higher cost: either a CPU cycle, or potentially a lot more opcodes. We only need XOR,
because we can De Morgan out XNOR. Full generality, stack depth 3, and maximum
speed would cost 4(30 + 31 + 32 + 33) = 160 opcodes. That’s too many. Two deep
with full generality would be 52 opcodes. That’s over 10% of our opcode universe.

Another weakness to this proposal is that bitwise boolean might be desired. if a ==

b and c & 5 or that kind of thing. We don’t have that.



5.4. IMMEDIATE TASKS AND THEIR ORDER 59

• IMM (register) number

This is not the desired final syntax. Number can be up to 0777777.

5.4 Immediate tasks and their order

• instruction format (machine)

• instruction format (syntax)

• decide on RETURN payload

• write RETURN

• decide syntax for scope

• write about how scope works and how registers are allocated

• finish up CALL, no conditionals please

•

•





Index

’ single quote, 5
( ) parentheses, 5
- hyphen, 5
. period, 5
; semicolon, 5
< > angle brackets, 5
@ at sign, 5

underscore, 5
‘ backtick, 5, 6

A, 11
ABS, 12
AC, 12
AND, 13
angle brackets, 5
ASCII, 5
ASL, 13
ASR, 14
at sign, 5
AW, 14
AWC, 15

backtick, 5
backtick, 6
binary constant, 6
BO -, 15
BOUND, 16
BZ -, 16

CALL, 17
call stack, 17
CLO, 18
CLZ, 18
CMP, 18
comment, 6
CRF, 19
CTO, 19
CTZ, 20
CX, 20

decimal constant, 6
DSL, 20

EJECT, 8
EMIT, 8
EO -, 21
EZ -, 21

FABS, 22
FO -, 22
FZ -, 23

GO -, 23
grave accent, see backtick
GZ -, 24

HALT, 24
HAM3, 8
Hamming weight, 41
head, 7
hexadecimal constant, 6
hyphen, 5

inline comments, 5
IPSR, 25

JUMP, 26

LANR, 27
LAS, 27
LFSR, 28
line continuations, 6
LO -, 28
LONR, 29
LSL, 29
LSR, 29
LZ -, 30

MAX, 30
memory

data, 2
program, 3
stack, 3

MH, 31
MHNS, 32
MIN, 32
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MIRD, 33
MIRI, 33
MIX, 34
ML, 35

NAND, 35
NAS, 36
NOP, 36
NOR, 37
NOT, 37
NUDGE, 38

octal constant, 6
OR, 38

PAIT, 40
parentheses, 5
PARTY, 39
PAT, 39
period, 5
PIT, 40
POPC, 41
popcount, 41
population count, 41
PRL, 42
PRR, 42
PSL, 43
PSR, 43

RANL, 43
register, 7
register file, 1
reverse subtract, 2
revisit

add cross ref, 11
CALL, 17
CALL pipelining, 17
D flip flops, 3
EMIT forcing stack underflow, 4
HALT, 24
immediate values, 4
JUMP pipelining, 26
JUMP scope, 26
mnenomics needed, 4
NOP pipeline flush, 36

pipeline, 3
program memory instructions, 3
read-only memory, 2
stack depth, 3
stack reset, 3
total users, 1

RONL, 44
ROT, 44
RS, 45
RSB, 45
RSW, 46
RSWB, 47
RTGL, 47
RTGR, 48

S, 48
SB, 49
semicolon, 5
signedness, 9
single quote, 5
single-line comments, 5
stack, 17
start bit, 38
STGL, 49
STGR, 50
STUN. -, 8
SW, 50
SWB, 51
SWIZ, 51

tail, 7
tetrasexagesimal constant, 6
tribble, 6
tribbles, 1
TXOR, 52

UN. -, 8
unary constant, 6
underscore, 5
users, 1

XIM, 52
XNOR, 53
XOR, 53
XPOLY, 54
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