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ABSTRACT

Marc W. Abel, Department of Computer Science and Engineering, Wright State 
University, 2020. A Solder-Defned Computer Architecture for Backdoor and Mal-
ware Resistance.

This research is about securing control of those devices we most depend on 

for integrity and confdentiality. An emerging concern is that complex integrated 

circuits may be subject to design defects or backdoors, and measures for inspec-

tion and audit of these chips are neither supported nor scalable. One approach for 

providing a “supply chain frewall” may be to forego use of such components, and 

instead to build CPUs and other complex logic from simple, generic components. 

This work investigates capability and speed limits of fusing open-source hardware 

methodologies with maker-scale assembly tools and visible-scale fnal inspection.

The author has designed, and demonstrated in simulation, a 36-bit arith-

metic logic unit (ALU) that uses only static RAM and trivial glue logic chips as 

components. The propagation delay is 30 ns. To improve performance, this ALU 

includes operations that reduce need for software loops, such as a hash function 

for associative arrays, a pseudorandom number generator, and bit permutation 

primitives. This ALU also converts transparently between signed and unsigned in-

tegers with rigorous detection and latching of overfow conditions, so that a single 

fag check can determine the validity of a lengthy arithmetic sequence.

The chief task of this research is to assess the feasibility and utility of ex-

tending the ALU into a transparently functioning, “solder-defned” minicomputer 

with preemptive multitasking, protected memory, and subsystems for memory 

and I/O. Computers of its family could be built either on a benchtop with a re-

fow oven, or on a small surface mount technology assembly line, using compo-

nents that are readily available as of 2020. A 36-bit architecture is anticipated 

with a board footprint of approximately 20 × 20 cm and a target speed of 10 

MIPS. Such an architecture, if practical, may be applicable to uses where trust in 

the hardware’s source is essential, and remote exploits cannot be tolerated.
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1. OVERVIEW

Irregularities in the behavior of computing hardware are a perennial source 

of software-related defects, including exploitable defects that are regarded as se-

curity vulnerabilities. The author groups these irregularities loosely into three 

categories, summarized in Table 1.

Category I represents ordinary hardware semantics or limits that program-

mers tend to overlook. These semantics and limits can lead to assumptions of in-

variance, to which attacks supply counterexamples. For instance, arithmetic re-

sults may go out of range. Memory bufers have fnite size. Clocks that keep time 

are not always monotonic. Shifts and division have peculiar, architecture-depen-

dent semantics for unusual operands. Suggested workarounds for Category I irreg-

ularities have included increasing the scrutiny done by programmers [31], and in-

creasing the separation between the instructions that programmers write and the 

silicon executing them [21].

Category II irregularities are anomalies that contradict the documented or 

understood operation of computing hardware. These are some of the bugs that 

appear in the news, as well as more primary sources like [3, 4, 8, 12, 14, 22, 23, 

25, 29, 32, 34]. They have whimsical names like “hidden God mode,” “Meltdown,” 

and “Silent Bob is Silent.” These pitfalls can sidestep the most attentive program-

mer’s precautions, and they can surface years after a hardware, operating system, 

or application platform is no longer supported by its original producer. To frst 

order, vulnerabilities from Category II irregularities cannot be solved through 

software, but require architectural changes to future generations of VLSI by the 

supplier.

Category III irregularities are hidden characteristics introduced within a 

hardware supply chain that do not align with the buyer’s security objectives. 

They can either be active logic that provides a backdoor for an unseen adversary 

to control a system, a passive mechanism for eavesdropping, or some combination 

of both [1, 10, 26, 28]. Such vulnerabilities are of particular urgency when na-

tional boundaries are crossed [27]. Another model that falls under Category III is 
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the outright counterfeiting of critical equipment by unknown manufacturers, such 

as reported in July 2020 for network switches [20].

Because Category III irregularities are adversarial in origin, there is incen-

tive to place them at points where the buyer can neither inspect nor repair the 

product, such as within VLSI or inaccessible microcode. In general, these vulnera-

bilities cannot be addressed satisfactorily either via software or through hopes 

that a supplier will abstain from inserting them. Instead, the buyer needs to ex-

tend some form of control over the manufacturing process and/or the fnal assem-

bled product.

This proposal’s essential target is hardware irregularity Category III, the 

case where a supply chain for complex logic, such as microprocessors and periph-

eral controllers, may be tainted by an adversary prior to delivery to a buyer. In 

such circumstances, computing equipment may contain a backdoor or a data ex-

fltration mechanism. A drastic approach is advanceda relocate the supply chain 

from manufacturing technology and processes that an adversary may control to 

technology and processes that are under the buyer’s control. There is a straight-

forward way to do thisa have the buyer manufacture its own complex logic. There 

is also a backup approacha have the buyer inspect its purchased logic.

Neither of these approaches can place a VLSI foundry at the buyer’s dis-

posal. Semiconductor fabs cost billions to build, and a short-term lease would be 

fnancially and logistically implausible. What may be practical, however, is to 

look back 50 years to a time when computers were assembled from simple compo-

nents by inexpensive tools at millimeter scale. The labor was costly, the dimen-

sions were large, the connections were many, and the unit price and weight were 
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Category I II III
Origin purposeful unexpected malicious
Example arithmetic wrap RowHammer hidden backdoor
Software fxx? yes no no
VLSI fxx? yes yes no
Manufacturing fxx? yes yes yes



beyond reach for many uses. But in time since, components and assembly pro-

cesses have undergone revolutionary change. What computing machinery can be 

built now, using basic components, inexpensive tools, and millimeter dimensionsx? 

And what are the security implications of this machineryx?

The central hypothesis of this proposal is that it is possible to build a re-

producible minicomputer1 today that meets the following informally stated supply 

chain tamper resistance criteriaa

Supply chain tamper resistance criteria

1. The computer’s electronic components are simple and generic enough, 

that it would not be practical for an adversary to introduce exploitable defects 

through the component supply chain.

2. Each electronic component already exists in the marketplace for other 

uses, and at least two manufacturers currently produce any particular component.

3. The computer can be assembled using current surface-mount practices, 

using either manual or automated placement and soldering.

4. The assembled computer can be inspected against open-source specifca-

tions, resulting in a modest level of confdence that exploitable defects were not 

injected into the product.

5. The computer can be warranted by the manufacturer to exactly match 

identifed open-source specifcations.

6. The computer can be warranted by the manufacturer to be assembled 

from components supplied by the buyer, or from a specifed bill of materials.

In addition to the supply chain tamper resistance criteria, an architectural 

specifcation with estimated performance fgures is described in the sections that 

follow. In brief, the proposed architecture claims a 36-bit word size, memory pro-

tection, and preemptive multitasking. The planned speed is ten million instruc-

tions per second (10 MIPS), and the board footprint is estimated around 20 × 20 

cm. There does not appear to be much margin to improve either metric using 

currently available components.

1 A defnition for minicomputer appears on page 6.
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In light of the low ceiling on instruction throughput, the design seeks a high 

yield of computational work as each CPU instruction is executed. There are two 

prongs to this strategy. First, the relationship between CPU cycles and instruc-

tions run is one-to-one. For the design proposed, a 10 MHz clock is equivalent to 

a 10 MIPS computer. Second, the architecture is designed to minimize the num-

ber of instructions needed to accomplish a task. For example, a context switch 

from running one program to running a diferent program is simply a write to a 

register, and takes just one instruction. No registers or fags need to be spilled to 

RAM in order to switch programs. Another example is the generation of statisti-

cally robust pseudorandom numbers, which despite only requiring two instruc-

tions per 36-bit word generated, passes all components of a leading suite of ran-

dom number generator tests [6].

Although buyer control the assembly process is primarily to suppress Cate-

gory III hardware irregularities (that is, malicious abnormalities), it would be an 

oversight for the buyer to leave unnecessary exploitable Category I and II irregu-

larities as residual risks. For this reason, the proposed architecture departs from 

current norms to roll back some of the complexity which has led to Category II 

surprises, as well as adopts instruction set semantics that simplify management of 

Category I concerns.

As the central hypothesis of this work is the constructability of a computer 

with a specifed architecture, without any additions to the parts available to as-

semble the machine from, the test of this hypothesis will be to attempt its con-

struction and report the outcome. The distance in efort between producing a 

correct simulation and producing a functioning machine is not a large one, but 

there is a signifcant diference in how the two endpoints would be perceived. The 

best value for this project, and the best prospect for its impact, are to bring the 

working (or not working) system to the dissertation defense. So this is the path 

that the research will take.

The minicomputer of this proposal would be fast enough to control most 

systems that physically movea industrial and commercial devices, factory automa-

tion, electric grids, wells and pumps, heavy machinery, trains, dams, trafc lights, 

chemical plants, engines, and turbines. It would also be fast enough for many uses 
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not involving motion, such as measurement and sensing, peripheral and device 

controllers, telephony, and even Ethernet switches to medium speeds. It would 

also permit desktop use writing and editing documents, making spreadsheets, 

sending and reading email, and writing and building software, although desktop 

software would need to be specifcally written for or adapted to the architecture. 

The proposed architecture is not small or fast enough for smartphones or video.

For servers, the applicability of the proposed architecture will depend on 

workload and surrounding components, especially software. A web platform in-

tended for an eight-core CPU and 64 GB of RAM is not within reach of this tech-

nology. Even if an application on this scale could be accommodated, the sheer 

size of the software will often present a larger attack surface than the hardware it 

runs on. On the other hand, server applications specifcally designed to run on 

and thoughtfully matched to the proposed architecture will run fne. Over the 

past 50 years, humans have proven adept at making systems ft within computing 

hardware constraints when sufcient motivation is present.
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2. DEFINITIONS

This proposal uses terms defned in [17], plus the following defnitions for 

concepts that do not have well-known terms.

Buyer. An authority responsible for the selection, procurement, installa-

tion, operation, and security of a computing platform on behalf of a risk owner.

Complex logic. Sequential circuitry of sufcient complexity to be capable 

of concealing exploitable defects.

Discounted logic. Logic for which a documented risk assessment and 

other controls validly establish that exploitable defects are unlikely to exist.

Maker-scale assembly tools. Tools and methods for constructing elec-

tronics that are within economic reach of most technically qualifed builders.

Microcomputer. From convention and [7], a “computer system that uti-

lizes a microprocessor as its central control and arithmetic element.”

Minicomputer. A computer where all complex logic, including but not 

limited to the central processing unit, that is not discounted is solder-defned.

Primary storage. Memory that a CPU accesses via load and store in-

structions. Primary storage is what people usually mean when they say “RAM.”

RAM. Unless otherwise stated, another term for static RAM. In this docu-

ment, most SRAM is not primary storage, but implements logic or registers.

Solder-defned behavior. Operational behavior that is determined by 

solder-defned hardware.

Solder-defned hardware. Circuitry that can be assembled from a set of 

components containing no complex logic, using maker-scale assembly tools.

Supply-chain frewall. A point in a supply chain through which one or 

more classes of exploitable defects will not readily pass.
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3. RESEARCH QUESTIONS

It is canon that VLSI is the key which during the 1980s unlocked all practi-

cal computing. The cost efciencies of the microprocessor and its descendants 

teach the feld that practicality and miniaturization cannot be separated, just as 

one cannot separate waves from particles or matter from energy. Eforts to ex-

clude semiconductor fabrication from certain stages of computer manufacturing in 

order to increase transparency and accountability will sacrifce much practicality. 

But how much practicalityx? Orders of magnitude, if practicality is measured by 

speed. But is speed the right metricx? For video rendering, yes, speed is a critical 

metric. What about for treating wastewaterx? Or for tabulating votesx? What 

kinds of applications are compatible with the architecture of this proposalx? 

Which are notx? How fexible is the compatibility boundary, and how easy is it to 

infuence which applications may be served and which may notx? How good can a 

near-term “high bar” be with respect to optimizing production cost, attack sur-

face, and supportable applicationsx?

What are the economics of installing a solution that may not just run 1000 

times slower, but also cost 1000 times morex? And that’s just the hardware cost. 

But consider avoided costsa IBM Security reports in July 2020 that the cost to 

remedy data breaches of more than 50 million records averages $392 million [16]. 

Also, there are liabilities around the planet that could be even more serious, as 

evidenced by the August 4 explosion of 2700 tons of ammonium nitrate in Beirut 

[13]. The cause of this incident remains under investigation and may not relate to 

computing, but potential for other atomic weapon-scale explosions which may re-

late undoubtedly exists. Air handlers for biosafety level 4 laboratories are another 

application where a $1 ARM processor may not be the architecture of choice. The 

proposed work won’t yield an actuarial model for these questions, but it can esti-

mate baseline costs for models that follow.

Other questions stem from whether and how the proposed architecture is 

going to work. What are the essential system blocks just above the RAM level, 

and how can they interoperatex? What table-based mechanisms exist that can re-

duce the number of cycles needed for multiplication, division, single-precision 
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foating arithmetic, permutations, pseudorandom number generation, hashing for 

associative arrays, and other necessary (but often performance-killing) opera-

tionsx? Is it efective to include special hardware, such as fast multipliers, for some 

of these operations when a signifcant increase in component count would resultx? 

Can practical encryption be implemented on a network-connected register ma-

chine with a word size much smaller than 128 bitsx?

What are the limits to cycle time and pipelining on SRAM-based CPUsx? 

Will it be possible to achieve, for example, 10 MIPS throughput on a system if 

the basic logic gate has a best-case delay of 7 ns, assuming such features as pro-

tected memory and preemptive multitasking are mandatoryx? And if that 

throughput is 10 MIPS, can this be 10 MIPS within the same thread, or will data 

hazards necessitate simultaneous multithreading—that is, interleaving instruc-

tions from two independent threads—to achieve this speedx?

If the CPU’s speed could be drastically increased by sacrifcing security-re-

lated features such as overrange checking and protected memory, can we arrive at 

the same net usefulness on smaller, cheaper hardware by employing a meticu-

lously scrutinized interpreter for a language reminiscent of Python, Java, or 

(more likely) Luax?

Many scientifc discoveries happen serendipitously before research questions 

can be formalized. Radio astronomy is a frequently cited example, born of an en-

gineer who pondered interference to transatlantic radio conversations [19]. The 

same has been true of preliminary research leading to this proposal. As an exam-

ple, the author assumed that a 32-bit minicomputer would be a good starting 

point for migrating applications to solder-defned machines. But after a few itera-

tions of 32-bit ALU designs, it became evident that SRAM exhibits a natural op-

timality for a 36-bit word size. Who knewx? And by apparent sheer coincidence, 

other system components such as primary storage turn out to be as readily ob-

tained in the market for 36 bits as for 32 bits. That 36-bit words appear to be a 

preferred implementation is an important scientifc result with many practical 

consequences and advantages, but no one embarked to make such a discovery. No 

questions were ever posed on this subject—and had they been, they would proba-

bly have made biased assumptions and found in favor of 32 bits. What happened 
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instead is, the author set out to do a project, and its output was new scientifc 

understanding. The discovery was intentional, no more accidental than when a 

drift net catches fsh, but the process was not guided by questions. Even the gen-

eral subject matter of the result could not have been anticipated, but what was 

learned turns out to be important. The author set out on a fshing expedition to 

catch something unknown, much like simulated annealing and self-organizing 

maps search wanderingly for optimal confgurations and informative patterns. It’s 

all valid and efcacious science.

The discovery that 36-bit words are a good specifcation was not an isolated 

event. It was likewise observed that repeated design cycles of SRAM ALUs tend 

to “pull” their architecture into very regular, dense networks like that drawn in 

Figure 3 on page 19. These networks ofer a high ratio of computational expres-

sivity to component count, and their proclivities stem from branches of mathe-

matics, network science, and combinatorics unfamiliar to the author and perhaps 

not widely explored at all. But the observation is noteworthy and consequential. 

Likewise, the SRAM-derived logarithmic shifter is believed to be novel, and its 

discovery was accidental. Earlier designs for the ALU involved shifters that used 

8-to-1 multiplexer circuits and/or exponentially wasteful SRAM input confgura-

tions. They ofered lackluster, but not worrisome, performance. But elsewhere in 

the ALU, 32 bits at the time, a mechanism was sought for quickly changing the 

endianness (byte order) of a word, as that operation was one of several where 

SRAM ALUs were suspected to bolster performance. The endianness problem’s 

solution came out isometric to what is now the frst layer of the logarithmic 

shifter of Figure 2 on page 18, and the second layer was already drawn below it 

as a mechanism for fast permutations of 4-bit subwords. Seen together, these two 

provisions explained how to shift or rotate any number of bit positions in one ma-

chine cycle, while employing very few components. There are more instances like 

this, where contributing discoveries were made, not only without questions being 

asked frst, but possibly because carefully targeted questions were never asked.

It would be very exciting if similar gains emerge in the proposed CPU, 

memory subsystem, and I/O subsystem. The author has long dreamed of CPUs 

made from connected memories where the datapath is not a loop, but computa-
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tions proceed instead by allowing data to reciprocate, as if regulated by a system 

of second-order diferential equations, among a small number of RAMs with their 

data lines sharing some kind of common bus. Alternatively, perhaps a bit-serial 

architecture can implement minicomputers with few components and yet some-

how be fast enough to be contributing. No ideas have emerged as to how to im-

plement either vision, so the “architect’s conception” of Figure 4 on page 29 is an 

SRAM extension of a very traditional RISC pipeline. It could change. Project-

driven research provides one type of incubator where the requisite leaps some-

times appear overnight, as they already have in this work to date.

In summary, questions from many directions attach to the proposed work, 

in part because no recent precedent exists for practical solder-defned architec-

tures. This research will contribute knowledge for several of these questions, al-

though which will be most contributing may turn out to be a surprise. Moreover, 

the thrust of this study to produce a high-quality, reproducible prototype is likely 

to spark insights into questions the author has yet to consider.
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4. LOGIC FAMILY SELECTION

The logic family to be used for this research is assembled from small asyn-

chronous static RAMs and fast glue logic. To help understand why this family is 

favored by this proposal, some alternatives are described.

Electromagnetic relays have switching times between 0.1 and 20 ms, are 

large, costly, and have contacts that wear out. Relays generally have the wrong 

scalea a practical word processor will not run on relays. Relays ofer certain bene-

fts, such as resistance to electrostatic damage, and purring sounds when em-

ployed at scale [11].

Solid-state relays, including optical couplers, can compute, but more 

cost-efective solid-state logic families are readily available.

Vacuum tubes have faster switching times than relays, but are large, 

costly, and require much energy. Like relays, their scale is wrong in several dimen-

sions. Commercial production in the volumes needed does not exist today. Power 

supply components might also be expensive at scale. Ordinary vacuum tubes 

wear out quickly, but special quality tubes have proven lifespans of at least 

decades of continuous use [30].

Nanoscale vacuum-channel transistors may someday work like vacuum 

tubes, but at present are only theoretical [15].

Transistors in individual packages are barely within scale. The VML0806 

package size is the smallest available, measuring 0.8 x 0.6 x 0.36 mm. An advan-

tage to using discrete transistors is that no component sees more than one bit po-

sition, so slipping a hardware backdoor into the CPU unnoticed would be partic-

ularly difcult.2 Finding transistors with desirable characteristics for CPUs might 

not be possible now; the MOnSter 6502 is an 8-bit CPU, but it can only operate 

to 50 kHz due to component constraints and board capacitance [24].

7400 series and other glue logic has largely been discontinued. NAND 

gates and inverters aren’t a problem to fnd, but the famed 74181 4-bit ALU is 

gone, the 74150 16a1 multiplexer is gone, etc. Most remaining chips have slow 

2 One possible backdoor would be to install several RF retro-refectors like NSA’s RAGEMASTER [26] in 
parallel, or a single retro-refector in combination with a software driver.
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specifcations, obsolete supply voltages, limited temperature ranges, through-hole 

packages, and/or single sources. 4-bit adders, for example, are still manufactured, 

but their specs are so uncompetitive as to be suggestive for use as replacement 

parts only. Counter and shift register selection is equally dilapidated. Some cur-

rent manufacturers are distributing datasheets that appear to be scanned from 

disco-era catalogs.

Current-mode logic ofers fast, fast stuf with diferential inputs and pre-

mium prices. Around $10 for a confgurable AND/NAND/OR/NOR/MUX, or 

$75 for one XOR/XNOR gate. Propagation delay can be under 0.2 ns. Power 

consumption is high. For ordinary use, parallel processing using slower logic fami-

lies would be cheaper than using today’s current-mode devices for sequential pro-

cessing.

In addition to the above one-bit-wide logic families, memory devices can im-

plement elaborate combinational logic on small words by using preloaded truth 

tables. Available memory families include the following.

Mask ROM requires large runs to be afordable, and fnished product 

must be reverse engineered to assure against backdoors. Propagation delay has 

typically been on the order of 100 ns, probably due to lack of market demand for 

faster products. If anyone still makes stand-alone mask ROM, they are keeping 

very quiet about it.

EPROM with a parallel interface apparently comes from only one com-

pany today. 45 ns access time is available, requiring a 5V supply. Data retention 

is 10 years in vendor advertisements, but omitted from datasheets.

EEPROM is available to 70 ns with a parallel interface. Data retention is 

typically 10 years, but one manufacturer claims 100 years for some pieces.

NOR flash with a parallel interface is suitable for combinational logic, of-

fering speeds to 55 ns. Storage density is not as extraordinary as NAND fash, 

but 128M × 8 confgurations are well represented by two manufacturers as of 

early 2020. Although access time is much slower than static RAM, the density 

ofered can make NOR fash faster than SRAM for uses like fnding transcenden-

tal functions (logs, sines, etc.) of single-precision foating-point numbers. Data re-
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tention is typically 10 to 20 years, so these devices must be periodically refreshed 

by means of additional components or temporary removal from sockets. Also, be-

cause no feedback maintains the data stored in these devices, NOR fash may be 

comparatively susceptible to soft errors.

One use for parallel NOR fash could be for tiny, low-performance microcon-

trollers that are free of backdoors. Such a controller may be useful for loading mi-

crocode into SRAM-based CPUs. Here again, a servicing mechanism will need to 

exist at the point of use on account of NOR fash’s limited retention time.

NAND flash is available with parallel interfaces, but data and address 

lines are shared. These devices aren’t directly usable as combinational logic. Se-

rial NAND fash with external logic could be used to feed microcode into SRAM-

based ALUs. Periodic rewrites are required as with NOR fash.

Dynamic RAM, or DRAM, does not have an interface suitable for com-

binational logic. This is in part because included refresh circuitry must rewrite 

the entire RAM many times per second due to self-discharge. Although standard-

ized, DRAM interfaces are very complex, and datasheets of several hundred pages 

are common. DRAM is susceptible to many security exploits from the RowHam-

mer family [25, 32], as well as to cosmic ray and package decay soft errors. The 

main upside to DRAM is that an oversupply resulting from strong demand makes 

it disproportionately inexpensive compared to better memory.

Programmable logic devices, or PLDs, and feld programmable gate 

arrays, or FPGAs, are specifcally designed for conveniently implementing com-

plex logic.  Their drawbacks are that they are not inspectable, are not auditable, 

not fungible, ship with undocumented microcode and potentially other state, 

have a central view of the logic being instantiated, and have a very small number 

of suppliers controlling the market. They are amazing, afordable products with 

myriad applications, but they may also be the ultimate delivery vehicle for supply 

chain backdoors. They are easily reconfgured without leaving visible evidence of 

tampering.

Static RAM, or SRAM, has the parallel interface necessary for combina-

tional logic once it has been initialized, but is not usable for computing at power-

up. It is necessary to connect temporarily into all of the data lines during system 

13



initialization to load these devices. Facilitating these connections permanently in-

creases component count and capacitance.

As a logic family, static RAM’s main selling point is its speed. 10 ns access 

times are very common, with 8 and 7 ns obtainable at modest price increases. 

Price is roughly 600 times than of DRAM as of February 2020, around $1.50/

Mibit. As a sequential logic family using standalone components, SRAM ofers 

the best combination of cost and computation speed available today. As primary 

storage, SRAM’s decisive selling point is natural immunity from RowHammer 

and other shenanigans.

SRAM’s ability to provide program, data, and stack memory at the re-

quired scale, abundant registers, and for some designs cache memory, is a charac-

teristic not aforded by the other logic families. This means that regardless of 

what components are eventually selected for computation, the design will include 

SRAM for storage. This storage will have to be trusted, especially in light of the 

global view of data that the SRAM would be given. If this trust of SRAM for 

storage is not misplaced, then also using SRAM for computation may not expand 

the attack surface as much as adding something else instead.

Static RAM is confusingly named, as here static means the RAM does not 

spontaneously change state, not that it uses a static charge to hold information. 

Dynamic RAM uses a static charge, and therefore spontaneously forgets its 

stored contents and requires frequent refreshes. SRAM is said to be expensive, 

but this is only compared to DRAM. SRAM generally uses four to ten transistors 

to store each bit, while DRAM uses one transistor and one capacitor. As SRAM 

is 600 times as expensive, factors beyond transistor count infuence price. Even 

so, the price of SRAM has fallen more than 100-fold over the last 40 years.

Asynchronous SRAM is available in 2020 in sizes to about 32 Mibit. An or-

ganization named JEDEC has standardized pinouts not only between manufac-

turers, but also across SRAM sizes. With careful planning, one can make boards 

for computers in advance, then wait for an order before deciding what size RAM 

to solder on. Current trends favor 3.3 volt power, operating temperatures from 

−40 to +85 C, and a certain but imperfect degree of component interchangeabil-
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ity. The JEDEC pinouts are somewhat undermined by manufacturers ensuring 

they ofer non-overlapping—although standardized—package geometries.

The chief drawback of using RAM as a building block is that the actual 

need is for ROM. The contents of function-computing memory only need altered 

if the architecture or features change. But ROMs are extremely slow, so much 

that most models are actually manufactured with serial interfaces. They aren’t 

for use when speed counts. The fastest advertised parallel EPROM ofers a 45 ns 

access time, contrasted with 10 ns for inexpensive SRAM.

Analog switches have been identifed which may be appropriate for deliver-

ing frmware into SRAMs at power-up. These include3 the PI3B3253 from Diodes 

Inc. and IDT’s QS3VH253, and are available with footprints down to 3 × 2 mm. 

The capacitance added is of similar order to another RAM pin or even two, so 

there is a penalty. Each package has two copies of a 1-to-4 pass transistor mux-

demux with an all-of option, so reaching the data lines of a 64k × 16 RAM would 

require roughly two switch ICs on an amortized basis, plus additional logic far-

ther away from where computations are made. Cost varies by model but can ap-

proach $0.25 per switch chip as of July 2020. So initialization hardware is pro-

jected to add about 50% over the SRAM cost.

3 Analog switch models and manufacturers are mentioned to facilitate comprehension only. The author has 
tested none, and endorses neither.
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5. ARITHMETIC LOGIC UNIT

The expressivity and conciseness of static random access memory as a logic 

family, in distinction from traditional Boolean logic gates, strongly infuence the 

manner in which complex logic should be constructed. Although SRAM arith-

metic logic unit (ALU) designs can be informed by designs based on other logic 

families, they should not be direct transcriptions.

Static RAM-based adders and shifters are two novel contributions of this re-

search. A short explanation of these elements in isolation may be helpful to un-

derstanding how carry-skip adders and logarithmic shifters can be superposed 

and used in practical ALUs.

Figure 1 presents a simple case of a carry-skip adder. The word size is 12 

bits, organized as four subwords of three bits. Each of the nine boxes shown rep-

resents a small SRAM. The four top RAMs simply add 3-bit integers by table 

lookup, yielding a 3-bit result and carry (c) bit for each subword. The main prob-

lem is handling the rightward propagation of these carry bits without delay accu-

mulating at each stage.

The carry-skip solution is diferent for SRAM logic architectures than from 

traditional ones. Familiar carry-skip adders exhibit fast leftward carry propaga-

tion. But in SRAM, the subword carry decisions are solved simultaneously by ta-

ble lookup. In Figure 1, carry decisions (d) are made for each subword by the 

lone RAM in the middle. Two inputs are used from each subworda the familiar 

carry input, and an input called propagate (p) that is true whenever the tentative 

subword sum is all ones. A subword’s propagate bit is true if the fnal carry out-

put for a subword should be identical to the carry input; that is, an all-ones re-

sult will roll to all zeros. Otherwise, the propagate bit is unset, and a subword’s 

tentative carry decision stands as the correct fnal carry. This middle RAM is also 

the easiest place to introduce any carry from a previous 12-bit addition.

The bottom row of RAMs in a carry-skip adder simply adds one to each 

subword, possibly wrapping from seven to zero in this three-bit illustration, based 

on the supplied carry decisions. A fnal carry bit is output, usually on the left 

side. A right-side carry output may accommodate unusual needs.
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Figure 2 shows an SRAM implementation of a logarithmic shifter. Its sub-

word striping scheme difers from commonly described barrel shifters that don’t 

need to not split into subwords [35], but its general strategy is similar in princi-

ple. In the example drawn, the word size is 16 bits organized as four subwords of 

four bits. There are two layers of four RAMs each. The frst layer does “coarse” 

rotations, meaning moving bits between subwords. The second layer does “fne” 

rotations, meaning moving bits within subwords.

The frst layer of RAM has its input and output wiring transposed in a self-

inverse manner. This allows each RAM in layer 1 to accept one bit from each sub-

word input, and send one bit to each subword output. The bit positions are iden-

tifed by letters in order to show their migration, and subwords can be tracked by 

their color. The circuit can rotate the word by any number of positions. The 

drawing is labeled to refect a left rotation of one position. The only bits which 

need to move across subwords are a, e, i, and m, which conveniently all arrive to 

and depart from the same RAM at the top left. This RAM’s color shift indicates 
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this rotation. The three other RAMs pass their bits through without adjustment, 

as shown by the unchanged colors.

The second layer of RAM gets to clean up from a minor mishapa the frst 

layer got each bit to its correct subword, but not to the correct position within its 

subword. The order of the bits arriving at layer two, after the untranspose hustle, 

is ebcd ifgh mjkl anop. It is a simple, table-driven operation to bring these 

bits into their fnal sequence of bcde fghi jklm nopa. If a left shift were desired 

instead of a left rotation, either layer can mask out the a bit.

Note that Figure 1’s adder, nothing happens with the machine word as car-

ries are decided by the RAM in the middle. This idle time is wasteful, and hap-

pens to be the same duration as the delay through the frst layer of Figure 2’s 

logarithmic shifter. So two transpositions (with no delay other than wire length) 

and a row of RAMs can be added to a 16-bit carry-skip adder as a new middle 

layer parallel to the carry decision RAM, and the bottom layers of the adder and 

shifter can be superposed into the same RAMs at diferent addresses. The out-

come is a simple ALU that can either add or shift during a machine cycle. This 

concept is expanded now into a nontrivial ALU with additional capabilities.
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Figure 3. Block diagram of 36-bit ALU



The ALU of Figure 3 ofers an example of the regular structure and high 

fexibility that SRAM can bring to complex logic. The drawing has been simpli-

fed for legibility, and shows the interconnections between 19 surface-mount RAM 

chips. Not shown are a 20th RAM that computes status fags, fve glue logic 

gates,1 and roughly 40 analog switch ICs that initialize the RAM at system 

startup. Once initialized, the ALU SRAM content does not change, and the chips 

function as fast ROM.

All but one of the RAMs has 16 address lines and 16 data lines, and there-

fore are a 64k × 16 or 1 Mibit confguration. The exception is marked α5 and re-

quires 128k × 16. Both of these sizes are commonly available. Although many of 

the data lines go unused by this ALU, narrower confgurations are less available 

and cost more.

The data’s path through Figure 3 is from left to right. The essential organi-

zation of the ALU is that two 36-bit operands, designated L (left) and R (right), 

are fed through three layers of RAM. In order to handle all 36 bits, each layer 

uses six RAMs that each look up functions of two 6-bit inputs applied to the ad-

dress lines, and produce a 6-bit output at the data lines. Additional address lines 

come from the control decoder and select the function to be computed.

The RAM layers are simply named α, β, and γ after the order of their ap-

pearance. They defy more descriptive names, because each layer has multiple 

functions that depend on the type and particulars of the operation being com-

puted. Most operations confgure the layers into one of these general arrange-

mentsa

1. Carry-skip adder. RAMs α0–α5 add 6-bit subwords, passing the result 

through the β layer unchanged to RAMs γ0–γ5. The γ layer adds one, where nec-

essary, to the subwords to obtain the correct 36-bit sum or diference. The deter-

mination whether or not to add one for each subword is decided by RAM θ, 

based on carry and propagate bits computed by  α0–α5. The upshot is that this 

ALU is able to add or subtract 36-bit integers in one pass. The time required is 

three RAM access times (about 30 ns), plus delays from board capacitance.

2. Logarithmic shifter. This arrangement provides shifts and rotations 

of the left operand. The number of positions to shift is encoded in the right oper-
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and and is replicated across the six subword positions. For this use, the α layer 

passes the left operand unchanged. Connections into and out of the β layer are 

transposed, meaning that each β RAM accepts one bit from each α RAM, and 

distributes one bit to each γ RAM. This allows β to rotate by any multiple of six 

bits, producing a “coarse” shift operation. The γ layer does “fne” subword rota-

tions of zero to fve bits. Proper coordination between β and γ thus permits rota-

tion by any amount encoded into the right operand. Shifts are implemented as ro-

tations with additional overrange checks at the α layer, masking at the β layer, 

and sign extension when needed at the γ layer.

3. Substitution-permutation network. By supplying a diferent S-box 

within each of the 18 RAMs, an invertable mixing function is applied to 6-bit 

subwords in the α and γ layer, and across 6-bit subwords in the β layer. The re-

sult is intentional chaos. On average, a single-bit change in the left (right) oper-

and results in 15.37 bits (16.47 bits) changing in the result.4 Note that an ideal 

mixing function would change half of the 36 bits on average, or 18 bits. The mix-

ing operation can be used directly as a hash function for associative arrays, using 

one CPU cycle per word output.

A second SPN use is to feed the mixing function back via the left operand 

while a linear feedback shift register ALU operation drives the right operand.5 

This results in a strong (but not cryptographically secure) pseudorandom number 

generator that passes all Dieharder [6] statistical tests, yet requires only two CPU 

cycles per word output.

A third use is as a one-cycle round function for a 36-bit block cipher. There 

are some cryptographic susceptibilities to overcome that are beyond the scope of 

this research, such as diferential analysis (S-box issues) and birthday attacks 

(block size issues) [5, 18]. Also, ciphers designed for this ALU will not perform 

efciently on other computer architectures, and vice versa. But if a secure cipher 

can be derived using this scheme, it could greatly speed encryption for network-

connected minicomputers.

4 Metrics would vary depending on the S-boxes chosen. The tested confguration flled the boxes using a 
nothing-up-my-sleeve binary expansion of the square root of 2.

5 The LFSR characteristic polynomial tested was x36 + x31 + x13 + x7 + x6 + x5 + x3 + x2 + 1.
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4. Bitwise Boolean logic. This ALU supports all 16 Boolean functions 

that take two inputs. Because the RAMs are crowded and memory is scarce, the 

16 functions are not all directly implemented, but built up through the layers. 

For example, the Boolean function LONR (Left Or Not Right) is composed by 

tasking α, β, and γ to AND, NOT, and XOR their respective inputs.

5. Permutation component. The β and γ RAMs each include a table of 

64 preselected permutations of six bits. The β permutations operate across sub-

words while holding the bit position within subwords constant, and the γ permu-

tations operate strictly within subwords. By composing from this limited “alpha-

bet” of permutations, it’s straightforward to compute any permutation of a 36-bit 

word in not more than fve CPU cycles.

6. Ad hoc logic. Several ALU operations don’t fall squarely into one of 

the above layer use patterns. For example, there is a DSL (Double Shift Left) op-

eration that does the double-register shift operation ABCDEF GHIJKL → BCDEFG, 

where each letter represents six bits of a register. This operation is a basic step in 

36-bit multiplication and is implemented via the α and β layers. There are many 

other ad hoc operations.

A full explanation of the ALU’s internal operation, semantics, corner cases, 

and fags is too much detail for this proposal, but will appear in a paper. A pre-

liminary description is available at [1], with design corrections from testing at [2]. 

Table 2 provides a partial list of operations with the number of instructions 

needed for each. In the architecture of this proposal, the execute stage of all in-

structions takes exactly one cycle, so counts of cycles and instructions are equiva-

lent.

The proposed architecture does not include a full hardware multiplier, al-

though [1] gives a detailed account of how and when to build a fast SRAM multi-

plier. Otherwise, full-word multiplication is done in software, using six specially 

designed ALU operations to speed multiplication routines. The 47 cycle worst 

case is not expected to apply to most instances of multiplication. Most often, 

multiplication is used to compute ofsets of small array elements, and those multi-
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plications only need three cycles due to their small multipliers and existing ALU 

support.

As mentioned on page 4, the ALU should not leave preventable hardware 

challenges on the table that can lead to exploitable defects. Over several decades, 

integer arithmetic wrapping has become a security concern, and treatment stop-

gaps have come at high cost. For instance in the C language, code that once read

c = a + b;

now has to read something along the lines of

if (   b > 0 && a > (INT_MAX - b)
    || b < 0 && a < (INT_MIN - b) )
    longjmp(CATCHIT, SIGNED_ADD_OVERFLOW);
else
    c = a + b;

to comply with CERT rules for “secure coding” [42]. Not only is this solution bur-

densome on humans who write and maintain C code, but it also slows the compu-
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Table 2. Principal ALU operations and timings

Operation Number of cycles

bitwise Boolean logic 1
add, subtract 1
magnitude compare, maximum, minimum 1
shift/rotate by 0 to 63 bit positions 1
reverse bits of 36-bit word 1
36-bit linear feedback shift register 1
hash function for associative arrays, per word hashed 1
round function for 36-bit cipher 1
absolute value 2
leading or trailing bit manipulation (40 operations) 2
pseudorandom number, per word output 2
population count (Hamming weight) 3
unsigned multiply 36 bits × 6 bits 3
count leading or trailing zeros or ones 5
any permutation of 36 bits ≤ 5
36-bit multiply with 72-bit result (rivals Intel 80486) 47



tation about fvefold. The weight of these problems can be much lightened by 

changes to the architecture itself, changes that are simple in nature and imple-

mentation.

Just about every CPU and ALU knows when some kind of wrapping occurs. 

Usually there is a carry fag that should not be set for unsigned arithmetic, and 

an overfow fag that should not be set for signed arithmetic. This scheme has two 

drawbacks. First, the instruction set only distinguishes signed vs. unsigned opera-

tions by how their fags are interpreted. This is to say, the ALU operates in the 

absence of signedness information. The second defect is that abnormal fag out-

comes are not retained, but overwritten on the next operation. The proposed ar-

chitecture rectifes both problems, allowing code in low-level languages such as C 

and assembler to be written like thisa

/* Register signedness transfers into machine code. */
unsigned int a, c, e, g;
signed int b, d, f, h;

/* Do as much arithmetic as desired. Don't test overflow. */
c = a - b;
h = d << e;
f = h + c;

/* Only test for exactly the knowledge needed. */
if (something_bad_ever_happened)
    deal_with_it_here;
else
    return f;

The ALU of Figure 3 has distinct operations for each combination of 

signedness. For example, there are eight operations that add 36-bit words. Four 

produce an unsigned result, and permit operands where both are signed, both are 

unsigned, the left only is signed, and the right only is signed. Another four pro-

duce a signed result with the same breakdown. What this means is that the ALU 

always knows whether or not the sum will ft in its destination register. If it does 

not ft, it sets the T fag.

The T fag indicates neither carry nor overfow, but that a “Temporal range” 

error has occurred. It works for any combination of operand and destination 
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signednesses; there aren’t alternative fags to check depending on the types in-

volved, as happens with traditional carry and overfow fags. T is more unifed. 

It’s called temporal, because the next instruction will overwrite the fag. Many 

programs will never need to inspect T, because if an instruction produces an in-

valid result, the needed information is not which specifc instruction fails, but 

that the result is not correct. This is the purpose of the R fag.

The R fag indicates that a “Range” error has occurred for a past arithmetic 

instruction. It is set automatically when T is set, but it is not cleared by subse-

quent arithmetic. R is only cleared by an explicit CRF (clear range fag) ALU op-

eration. So if a program has an integer expression or series of expressions to eval-

uate, the math itself can be separated from the error trapping. Once the result is 

obtained, R can be checked just once, and the result will be valid if R is clear.

A useful side efect of this range checking and signedness stratifcation of 

operations is that the programmer can be less thoughtful about variable types. In 

C and other languages, promotion rules, function prototypes, and implementa-

tion-dependent behavior make choosing variable signedness difcult. A program-

mer often knows that an integer variable should never be negative, but can still 

be pressured into declaring it signed in order to avoid breaking something. All 

this leads to confusing code, confused maintainers, and ultimately exploitable de-

fects. For instance, C does not know how to add an unsigned operand to a signed 

operand. The ALU of this proposal does. In particular, range checking works cor-

rectly over the integers fora

• addition and subtraction for all signedness combinations,

• maximum and minimum for all signedness combinations,

• magnitude comparison for all signedness combinations,

• array boundary checking for any index signedness, and

• left and right arithmetic shifts of 0 to +63 bit positions for any signed-

ness of the quantity to be shifted and any signedness of the destination register.

A minor limitation of this list is that shifting integers by considerably larger 

than the word size, or by a negative number of bit positions, is not supported. 

The reason can be seen in Figure 3a the number of positions to shift is conveyed 
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via the right operand, and must be distributed to all RAMs in the β and γ layers. 

Only six bits are available to encode the shift amount for each RAM, limit the 

number of encodings to 64. As the word size is 36 bits, 37 of those encodings rep-

resent shifts of 0 to 36 positions. For the 27 remaining encodings, it was decided 

that supporting shifts of 37 to 63 places would have better consistency and use-

fulness than enabling shifts of −1 to −27 places. Thus shifts in either direction 

are supported by using distinct left and right operations.

This ALU’s shift semantics are a little diferent than on conventional pro-

cessors. Shifts of unsigned words are traditionally called logical shifts, and signed 

word shifts are arithmetic shifts. On this ALU, both of these cases are arithmetic 

shifts, because their results will be range checked. Unchecked shifts by this ALU 

are termed logical shifts. Checking shift results is important, because the ALU 

has no multiply instruction, implying that an arithmetic shift is the way to multi-

ply or divide by a constant power of two.6 And as the R fag supports composi-

tions, statements such as

kilo = kilo << 10 - kilo << 4 - kilo << 3;

can multiply kilo by 1000 in fve CPU cycles without need to test for 

overrange during the computation.7 The variable may be signed or unsigned.

Firmware for the ALU (that is, the contents of its 20 SRAM chips) has 

been generated and tested successfully in simulation, including the correct opera-

tion of all fags and intended detection of overrange conditions. The test vectors 

are randomly generated, with some skewed to occur near corner cases. Results are 

verifed using code and algorithms that are independent of the ALU’s frmware. 

For instance, the frmware adds by combining results of 6-bit subword additions, 

but the verifcation checks by adding 36-bit integers on 64-bit hardware. Over-

range handling for shifts is verifed in the simulator not by checking if results are 

out of range (as this is how the ALU does this), but by checking if the inverse 

shift yields the original word. 6-bit permutations are tested by composition into 

6 The case of negative dividends does not work, as rounding is toward negative infnity.
7 The applicable domain for the multiplicand is about 2.5% less than a non-subtractive method would 

provide, but overrange is detected when the supported domain is exceeded.
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randomly chosen 36-bit permutations. And so on. The outcomes of these tests 

give strong additional assurance that the ALU frmware is correct.

The simulation does not yet implement all operations that are planned for 

the ALU, but the operations where implementation presented technical challenges 

are complete. All that is implemented also has a working regression test. The cur-

rent frmware includes all addition, subtraction, rotations, logical shifts, signed 

and unsigned arithmetic shifts, magnitude comparison, short unsigned multiplica-

tion, bitwise Boolean functions, bit permutations, array bound checking, S-box 

mixing for hashing/PRNG/ciphers, clearing the Range fag, and a pointer align-

ment operation. All of this code is available from [2]. A separate simulation 

demonstrates that a 47-instruction full unsigned multiplication routine works.

ALU frmware not yet written includes less frequently used, fairly straight-

forward operations such as absolute value, population count, leftmost zero isola-

tion, and many others.

The work of this dissertation is to assess whether this promising ALU simu-

lation can be expanded into a practical and working hardware platform. If this 

innovation proves to be feasible, it may emerge as the world’s frst “gold stan-

dard” for transparently functioning, fully auditable, and user-constructable com-

puters for integrity- and confdentiality-critical missions.
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6. MINICOMPUTER AND RESEARCH PLAN

The objectives of this research are to establish the feasibility of building a 

practical solder-defned minicomputer, and to ensure that the outcome is repro-

ducible. The proposed system will consist of a CPU, primary storage, an I/O 

mechanism, and necessary frmware. The computer will be constructed using 

maker-scale assembly tools, with the hope that when it is complete, it will be un-

likely to contain backdoors or exploitable hardware irregularities that survive the 

assembly process. If the system proves to be feasible, its attack surface can be far 

smaller than that of a traditional computera

1. The CPU and its frmware can be inspected and validated against pub-

licly available references without reverse engineering any VLSI.

2. The CPU and its frmware can be produced on demand by the buyer or 

any of myriad, often local, circuit board assembly services.

3. Hazardous complexity can be eliminated, precluding exploits such as 

Spectre [22], Meltdown [23], and RowHammer [25].

4. Instruction set semantics can assist in detecting and containing unex-

pected behavior, such as integer wraparound.

5. The I/O mechanism can be fortifed to safeguard the I/O bus and bus-

attached memory from attack by rogue peripherals.

6. Full documentation and executable models for simulation can be avail-

able to and challenged by anyone, without requiring a physical system.

7. The buyer can have exclusive control over availability, service life, man-

ner of use, features, modifcations, support, and access to repair.

Figure 4 presents a general map of how such a minicomputer may be archi-

tected. Everything drawn is subject to improvement and new ideas. Each box in 

the fgure represents an SRAM module, either a single IC or a small number 

ganged in parallel. The arrows show information fow during a CPU cycle, not 

the complex interconnections that implement the fow. Only the frst appearance 

of each module is drawna the two register fle copies appear in the fourth line 

from the top, but are accessed again in either the eighth or tenth line. There isn’t 
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Figure 4. CPU cycle depiction with static RAM shown as boxes



room to draw all necessary arrows, so † and * are used to abbreviate two frequent 

sources.

This is a Harvard architecture computer, meaning that primary storage is 

divided into separate RAM ICs for code and data. These two memory banks can 

be accessed simultaneously. For simplicity, performance, and security reasons, 

only static RAM is used for primary storage. There is no DRAM. There is also 

no CPU cache, as no speed gap exists to improve on between chips for cache 

memory and chips for primary storage. In lieu of cache memory, a large number 

of general-purpose registers, at least 512 per program running, signifcantly re-

duce the number of instructions and register spills needed. As the two register fle 

copies are at least 64k × 36 each, at least 128 programs can be resident without 

need to save or restore any registers when switching.

This CPU does not have a stack frame and does not directly support recur-

sive functions. This allows better allocation and reuse of general-purpose regis-

ters, while ruling out stack overfow and return address overwrites. The program 

counter is implemented as the top element of a stack of return addresses, clus-

tered according to which program is running. If no suitable counter ICs are avail-

able for sale, linear feedback shift registers may be implemented instead, as was 

once done in [33] for other reasons.

Subroutine return addresses exist solely in physically segregated SRAM. All 

branches, including calls, are to fxed 27-bit addresses within their 36-bit instruc-

tions. The only possible subroutine return point is the instruction immediately 

following the call. The CPU does not directly support relocatable code or point-

ers to functions. This eliminates need for program memory management hard-

ware, because the operating system can detect and preclude any unpermitted 

branches at program load time. It also simplifes calling library code, which works 

exactly like calling a regular subroutine, provided that the library routine’s link-

age is authorized at program load time.

Along the same lines, no hardware is needed to keep ordinary programs 

from executing restricted opcodes, such as opcodes that write to program mem-

ory or access hardware. The operating system can trivially scan for and disallow 

restricted opcodes as programs are loaded.
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The code RAM is organized as 36-bit words. This is a readily available 

width for memory. Most instructions use nine bits each for the opcode, two 

source registers, and a destination register. The most promising location to divide 

the CPU cycle into a two-stage pipeline stages is immediately after instruction 

fetching. Stage two would begin with operand fetching and instruction decoding. 

The simplest way to preclude data hazards is to not further divide the stage two 

into smaller segments, so each instruction completes its register or memory write 

before another instruction fetches any data.

With a two-stage pipeline, a branch hazard will exist, because the frst in-

struction after any branch will be unconditionally loaded and decoded. The sim-

plest remedy is to document the hazard, and let the assembler, compiler, or pro-

grammer to generate code that accommodates this behavior. Much of this haz-

ard’s performance penalty can be optimized out.

The ALU has a benign bottleneck in that its three layers all receive the 

same right operand. More could be accomplished in one cycle if diferent layers 

could receive diferent right operands. This enhancement is labeled “immediate 

value insertion” in Figure 4, where right operands for β or γ can come from sev-

eral sources. It also solves the problem as to how constants are loaded into regis-

ters or memory for the frst time, as well as reduces register pressure.

If shortening the second pipeline stage becomes necessary, the page table 

and RAM access may be moved up parallel to the ALU, at the cost of losing use 

of the ALU for address arithmetic within the same CPU cycle. As the RAM does 

not require caching and takes only 10 ns, the most efcient place to introduce

I/O may be via the main RAM. This approach would need the I/O controller to 

provide memory protection to protect the RAM from unauthorized reading or 

tampering by faulty or compromised peripherals.

The ALU omits fast hardware multiplication, because it is not a consis-

tently cost-efective means of improving performance. For systems where the cost 

can be justifed, [2] shows how to build a fast SRAM multiplier. The CPU design 

is “multiplication ready” in that a 72-bit result can be split between the two 36-

bit register fles using a single write, and the instruction set already has 16 op-

codes for processing these “half registers” independently.
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From an investigative research perspective, there are four key hurdles to 

overcome in as elegant a manner as possible, given the limited selection of avail-

able componentsa

1. SRAM data lines are bidirectional, and the CPU needs many intercon-

nections, often 36 bits wide, between many segments. Capacitance and added 

drivers are both penalized, and their tradeofs must be considered.

2. Many RAMs, such as the page table and code memory, need provision for 

occasional updates by the operating system.

3. All RAMs will need provision for loading frmware, using circuits that 

will need to drive every address and data line high or low as needed.

4. Timing and data fow relationships will be complex, call for a pipelined 

solution, and have a tight budget if a 10 MIPS goal is to be met.

This research will be successful if it manifests a minicomputer that is shown 

to do all of the following, frst in simulation, and then with a physical prototypea

1. employ only simple, fungible components,

2. implement the operations stated in Table 2,

3. stay within the number of cycles in Table 2,

4. detect overrange conditions for any combination of signednesses,

5. latch the overrange CPU fag for inspection at a later point,

6. provide a no-wait-state memory subsystem using SRAM,

7. support some form of bus-safe I/O for at least 7 devices,

8. provide preemptive multitasking,

9. take no more than 5 CPU cycles to fully switch programs,

10. supply a resident monitor program for testing and diagnostics,

11. prevent unauthorized programs from accessing others’ memory,

12. prevent unauthorized programs from using restricted instructions,

13. load its own frmware from a single fash memory IC, and

14. sustain 5 million instructions per second (the hope is 10 MIPS).

The research is anticipated to take one year. The tasks will be interleaved 

so as to make the best progress, accommodate supplier and assembly lead times, 
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and balance the tasks engaged in to assure freshness and diversity. These tasks 

will includea

1. an accepted journal article describing the ALU,

2. specifcation of the complete instruction set for the CPU,

3. validation and testing of the instruction set in a mocked-up system simu-

lation (of the instructions, not of the hardware),

4. an assembler and resident monitor program written,

5. full component selection and electrical design of the CPU, memory sub-

system, I/O subsystem, and initialization (frmware load) circuits,

6. access points added to the design to facilitate physical testing,

7. simulation testing of the complete electrical design and its access points, 

including verifcation of the 14 success criteria of the preceding list,

8. a relationship established with a circuit board assembly frm,

9. layout of one or more prototype circuit boards,

10. component procurement and circuit board assembly,

11. CPU testing, troubleshooting, and re-manufacture as needed, and

12. functional verifcation of the assembled minicomputer, based on the 14 

success criteria.
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7. DISSERTATION OUTLINE

Here is a sketch of the sections the dissertation may include.

1. Overview

1.1 Categories of hardware behavior irregularities

1.2 Opportunity to reduce hardware attack surface

1.3 Practicality and economy of building CPUs

1.4 Logic family selection

1.5 SRAMs as electrical components

2. Notation and defnitions

3. SRAM building blocks for complex logic

3.1 Simple lookup elements

3.2 Arbitrary geometry adders

3.3 Carry-skip adders

3.4 Swizzlers

3.5 Logarithmic shifters

3.6 Semi-swizzlers

3.7 Substitution-permutation networks

3.8 Fast multipliers

4. Glue logic for special challenges

4.1 SRAM initialization

4.2 Fast counters

4.3 Latches, multiplexers, and tristate devices

5. 2-layer arithmetic logic unit designs

5.1 A 2-layer ALU for 36-bit words

5.2 A tiny ALU for 18-bit words

6. 3-layer arithmetic logic unit designs

6.1 A 3-layer ALU for 36-bit words

6.2 Additive operations

6.3 Bitwise boolean operations

6.4 Compare operations
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6.5 Shift and rotate operations

6.6 Multiply operations

6.7 Bit scan operations

6.8 Bit permute operations

6.9 Substitution-permutation network operations

6.10 α layer operation

6.11 α layer operation, leftmost tribble

6.12 β layer operation

6.13 γ layer operation

6.14 � operation

6.15 Overrange detection and fags operation

6.16 Miscellaneous unary operations

6.17 Leading and trailing bit manipulation

7. Architecture of a 36-bit solder-defned minicomputer

7.1 Overview

7.2 Distinctive characteristics

7.3 Instruction set summary

7.4 Instruction pointer and call stack

7.5 Code primary storage

7.6 Instruction decoder

7.7 Register fles

7.8 Immediate value insertion

7.9 ALU

7.10 Memory protection and page table

7.11 Data primary storage

7.12 I/O subsystem and peripherals

7.13 Multitasking and multithreading

7.14 Initialization components

8. Necessary code

8.1 ALU frmware

8.2 CPU frmware
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8.3 Initialization frmware

8.4 Tools for generating and testing frmware

8.5 Assembler

8.6 Integer arithmetic subroutines

8.7 Single-precision foating point examples

8.8 I/O subroutines

8.9 Hashing, random number generation, and ciphers

8.10 Other noteworthy assembler subroutines

8.11 Resident monitor

8.12 Sample applications

8.13 Future toolchains, operating systems, and libraries

9. Physical prototype

9.1 Tools for circuit and board design and testing

9.2 Passive and supporting component selection

9.3 Circuit board layout and fabrication

9.4 Gerber fles

9.5 Component placement fles

9.6 Fabrication outcome

9.7 Functional testing outcome

9.8 Speed outcome

9.9 Bill of materials

10. Implications

10.1 Security added by improving semantic consistency

10.2 Security added by simplifying architecture

10.3 Security added by owning supply chain

10.4 Weaknesses and landscape for future attacks

10.5 Suitable uses and limitations

10.6 Social and psychological beneft

10.7 Environmental tradeofs

10.8 Originality of research and contributions made

11. References
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8. SCHEDULE

Members of the dissertation committee are encouraged to contact the au-

thor at any time with questions, suggestions, or for any other reason. The author 

will invite the committee members to meet with him at a mutually convenient 

date at the start of each semester, including summer. The author and chairperson 

will meet more frequently at appropriate times.

The author will email an appropriate report of his progress, as well as need 

for any assistance, to all committee members on or just before the 15th day of 

each month. These reports can increase in frequency if appropriate.

The target dates of Table 3 are products of estimates and simplifed expla-

nations. Two contingencies are attacheda

1. The quality, completeness, and most importantly impact of the research 

take priority over publication dates and graduation date.

2. The author has applied for a National Science Foundation grant that 

overlaps in scope with this proposal. If funded, specifc tasks may need to extend 

into the frst quarter of 2022 to meet the NSF contract’s obligations.
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Table 3. Milestone goal dates

Task Substantial completion

ALU frmware and features fnalized 11 Sep 2020
ALU journal article submitted 2 Oct 2020
instruction set fully specifed 18 Dec 2020
virtual machine works at instruction level 18 Dec 2020
assembler written 18 Dec 2020
resident monitor written 18 Dec 2020
return from break 4 Jan 2021
difcult circuit questions answered 29 Jan 2021
test fabrication of smaller circuits 26 Feb 2021
netlist specifed 26 Mar 2021
virtual machine works at component level 26 Mar 2021
bill of materials fnalized 26 Mar 2021
components on order 2 Apr 2021
Gerber and placement fles ready 30 Apr 2021
prototype received 28 May 2021
prototype evaluated 11 Jun 2021
draft dissertation available to committee 30 Jul 2021
presentation materials ready 13 Aug 2021
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