
When Makers Make Secure CPUs

Marc W. Abel

Wakefield Cybersecurity

To increase security, reduce complexity

COMPLEXITY

S
E
C
U
R
IT
Y

What’s wrong with our hardware?

I Too complex

I Beyond control of purchasers

I Brazenly spiteful of programmers

I Oligopolist suppliers

Categories of vulnerability-inducing

hardware irregularities

Category I II III

Origin purposeful unexpected malicious
Example arithmetic wrap RowHammer hidden backdoor
Software fix? yes no no
VLSI fix? yes yes no
Manufacturing fix? yes yes yes

Category I example: Integer wraparound

(Category I irregularities exist for a purpose.)

C programmers used to write:

c = a + b;

Today, they would need to write:

if (b > 0 && a > (INT_MAX - b) || b < 0 && a < (INT_MIN - b))

longjmp(CATCHIT, SIGNED_ADD_OVERFLOW);

else

c = a + b;

Some well-known Category II irregularities

(Category II irregularities are unplanned and unexpected.)

When Architecture Name Synopsis

1985 80386 multiply bug arithmetic error
1994 Pentium FDIV arithmetic error
1998 Pentium F00F lockup
2003 Via C3 God mode privilege escalation
2008 Intel AMT Silent Bob full control of everything
2015 DRAM RowHammer memory corruption
2017 x86 Spectre read others’ memory
2017 x86, POWER, ARM Meltdown read all memory
2020 Intel SGX load value inj. inject data values
2020 Intel CSME [M. Ermolov] broken authentication

Actual and rumored Category III exploits

(Category III irregularities are intentionally malicious.)

Who Architecture Synopsis

AMD Platform Security Processor hypothesized backdoor
Apple iPhone 6 + iOS 10.2.1 sabotaged performance
Deere 8520T tractor right to repair infringements
Huawei 5G cellular infrastructure potential for China influence
Intel Management Engine hypothesized backdoor
Intel RDRAND instruction non-randomness suspicions
NSA ANT Catalog implantable surveillance products
VIA C3 (x86 clone) backdoors claimed by C. Domas
ZTE 5G cellular infrastructure potential for China influence

Proposed Category III countermeasures

Proponent Synopsis

Michael Pompeo geopolitical controls
Adam Waksman lock down VLSI supply chain
Eric Love add formal proofs of security to hardware IP
Mirko Holler X-ray ptychographic inspection
Marc Abel complex logic to be built by end user

The architecture of this talk

targets all categories

Category I II III

Origin purposeful unexpected malicious
Example arithmetic wrap RowHammer hidden backdoor
Software fix? yes no no
VLSI fix? yes yes no
Manufacturing fix? yes yes yes

Computers were once BIG

The speaker using an IBM 1130.

Norwester, 62, p. 73 (1986).
Used with permission.

Alternative logic families

Technology Challenges

mechanical relays contacts only last a few million instructions
vacuum tubes power; weight; availability
transistors not designed for this use; board capacitance
solid-state relays slow; more cost-effective logic exists
7400 “glue logic” derivatives mostly discontinued; mostly dismal speed
current-mode logic very high cost (despite promising speed)
mask ROM not on market; high economic order quantity
EPROM, EEPROM self-erasure over years; slow
NOR flash self-erasure over years; slow
NAND flash unsuitable interface; self-erasure; slow
dynamic RAM (DRAM) unsuitable interface; complexity; exploits
PLDs, FPGAs too few suppliers; susceptible to backdoors

SRAM logic gate

During operation

SRAM

16

16

address

data

input

output

During initialization

SRAM

16

16

address

data

�rmware
16

ctrl

¬ctrl

input

output

write

enable

SRAM logic gate sample application

SRAM

6

6

6

L R

Y

operation

select

4

Select Use

0 L + R
1 L − R
2 R − L
3 NOT L
4 L AND R
5 L NAND R
6 L OR R
7 L NOR R
8 L XOR R
9 L AND NOT R

10 L × R, low 6 bits
11 L × R, high 6 bits
12 shifts/rotations of L (select by R)
13 permutations of L (select by R)
14 L encrypted with key R
15 L decrypted with key R

36-bit ALU with 18 SRAMs

R0R1R2R3R4R5

R0R1R2R3R4R5

add, subtract,
logic, etc.

add, subtract,
logic, etc.

add, subtract,
logic, etc.

add, subtract,
logic, etc.

add, subtract,
logic, etc.

add, subtract,
logic, etc.

coarse rotate,
shift, etc.

coarse rotate,
shift, etc.

coarse rotate,
shift, etc.

coarse rotate,
shift, etc.

coarse rotate,
shift, etc.

coarse rotate,
shift, etc.

carry/borrow,
�ne rotate, etc.

carry/borrow,
�ne rotate, etc.

carry/borrow,
�ne rotate, etc.

carry/borrow,
�ne rotate, etc.

carry/borrow,
�ne rotate, etc.

carry/borrow,
�ne rotate, etc.

R0R1R2R3R4R5
L0L1L2L3L4L5

Y0Y1Y2Y3Y4Y5

L and R: 36-bit Left and Right operands, 6 bits per slice

Y: 36-bit result, 6 bits per slice

α

β

γ

36-bit ALU with 18 SRAMs

R0R1R2R3R4R5

R0R1R2R3R4R5

add, subtract,
logic, etc.

add, subtract,
logic, etc.

add, subtract,
logic, etc.

add, subtract,
logic, etc.

add, subtract,
logic, etc.

add, subtract,
logic, etc.

coarse rotate,
shift, etc.

coarse rotate,
shift, etc.

coarse rotate,
shift, etc.

coarse rotate,
shift, etc.

coarse rotate,
shift, etc.

coarse rotate,
shift, etc.

carry/borrow,
�ne rotate, etc.

carry/borrow,
�ne rotate, etc.

carry/borrow,
�ne rotate, etc.

carry/borrow,
�ne rotate, etc.

carry/borrow,
�ne rotate, etc.

carry/borrow,
�ne rotate, etc.

R0R1R2R3R4R5
L0L1L2L3L4L5

Y0Y1Y2Y3Y4Y5

L and R: 36-bit Left and Right operands, 6 bits per slice

Y: 36-bit result, 6 bits per slice

α

β

γ

Datapath summaryInstruction pointer
27 bits

ALU �

ALU �

ALU �

ALU �

ALU �

page table

data RAM

instruction
decoder

code RAM

left regs right regs

to �ag logic
4 bits

to �ag logic
7 bits

right operand
36 bits

left operand
36 bits

opcode
9 bits

right reg
9 bitsleft reg 9 bits

dest reg
9 bits

propagate & carry
12 bits

carry summary
2 bits

alpha result
36 bits

beta result
36 bits

carry deci sions

6 bits

Boxes represent static RAM.

Not a toy computer!

Operation CPU cycles

read or write data memory 1
bitwise Boolean logic (16 operations) 1
add, subtract 1
magnitude compare, maximum, minimum 1
shift/rotate by 0 to 63 bit positions 1
reverse bits of 36-bit word 1
leading or trailing bit manipulation (40 operations) 1
36-bit linear feedback shift register 1
hash function for associative arrays, per word hashed 1
round function for 36-bit cipher 1
absolute value 2
pseudorandom number, per word output 2
population count (Hamming weight) 2
count leading or trailing zeros or ones 2
unsigned multiply 36 bits× 6 bits 3
any permutation of 36 bits ≤ 5
36-bit multiply with 72-bit result (rivals Intel 80486) 35

Not a broken computer!

I Sticky out-of-range flag for all arithmetic
I Mixed sign variants for add, subtract, multiply, shift, absolute value
I No stack overflow possible
I No program access to stack except CALL and RETURN

I No branch to addresses not present in the instruction word
I No privilege escalation via the CPU
I No DRAM or DRAM-associated vulnerabilities
I No complex logic from IC manufacturers within CPU
I Every I/O device confined to its own bus and buffer
I No CPU persistent state except for one firmware IC
I No secret functionality
I No vendor lock-in
I No encrypted or closed-source firmware
I No license fees to build, use, or modify
I No purpose of use limitations
I No right to repair infringements

What are the tradeoffs?

I compatible with NOTHING on the planet ... by design

I new OS, toolchains, software, and docs needed for everything

I no talent already familiar with the hardware

I unlikely to ever run Linux, support GCC or CLANG, etc.

I speeds above 20 MIPS not on the immediate horizon

I memory size constrained by SRAM market

I higher cost per unit, around $1,000

I native peripherals limited to SPI and I2C buses for now

I larger and more energy-consuming than prevalent architectures

I not yet peer-reviewed or validated by field experience

On the other hand, you truly own it.

Potential applications

Fast enough for

I hardened desktop applications

I electronic mail

I light- to moderate-use servers

I control objects that move

I process controls

I peripheral and device controllers

I telephony

I modest Ethernet switches

Too slow for

I most Web surfing

I machine learning

I image and video processing

I self-driving vehicles

I fast raster or vector graphics

I fast symmetric cryptography

I fast asymmetric cryptography

I micro air vehicles

Questions and answers

Thank you for spending this time with us!

Word size 36 bits
MIPS 20
Memory protection yes
Multitasking preemptive
Registers per program 512
Programs ready to run 256
I/O buses SPI and I2C
Maximum code RAM 4M × 36 bits
Maximum data RAM 8M × 36 bits
Manufacturer you

Wakefield Cybersecurity
https://wakesecure.com

	Welcome!

